These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15051461)

  • 21. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics.
    Tan SY; Ata S; Wanless EJ
    J Phys Chem B; 2013 Jul; 117(28):8579-88. PubMed ID: 23796213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Fine Bubble Attachment onto a Solid Surface within the Framework of Classical DLVO Theory.
    Yang C; Dabros T; Li D; Czarnecki J; Masliyah JH
    J Colloid Interface Sci; 1999 Nov; 219(1):69-80. PubMed ID: 10527573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coalescence of bubbles covered by particles.
    Ata S
    Langmuir; 2008 Jun; 24(12):6085-91. PubMed ID: 18484761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles.
    Dickinson E; Ettelaie R; Kostakis T; Murray BS
    Langmuir; 2004 Sep; 20(20):8517-25. PubMed ID: 15379469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle film growth driven by foam bubble coalescence.
    Binks BP; Clint JH; Fletcher PD; Lees TJ; Taylor P
    Chem Commun (Camb); 2006 Sep; (33):3531-3. PubMed ID: 16921435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of particle-bubble interactions using atomic force microscopy: A review.
    Johnson DJ; Miles NJ; Hilal N
    Adv Colloid Interface Sci; 2006 Nov; 127(2):67-81. PubMed ID: 17196155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detachment force of particles from air-liquid interfaces of films and bubbles.
    Ally J; Kappl M; Butt HJ; Amirfazli A
    Langmuir; 2010 Dec; 26(23):18135-43. PubMed ID: 21067140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of high salt concentrations on the stabilization of bubbles by silica particles.
    Kostakis T; Ettelaie R; Murray BS
    Langmuir; 2006 Jan; 22(3):1273-80. PubMed ID: 16430294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bubble formation properties of hydrophobic particles in water and cells of Tetrahymena.
    Hemmingsen EA; Hemmingsen BB
    Undersea Biomed Res; 1990 Jan; 17(1):67-78. PubMed ID: 2107617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes.
    Subramaniam AB; Gregory D; Petkov J; Stone HA
    Phys Chem Chem Phys; 2007 Dec; 9(48):6476-81. PubMed ID: 18060179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling the global efficiency of dissolved air flotation.
    Leppinen DM; Dalziel SB; Linden PF
    Water Sci Technol; 2001; 43(8):159-66. PubMed ID: 11394269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle-interface interaction across a nonpolar medium in relation to the production of particle-stabilized emulsions.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP; Lips A
    Langmuir; 2006 Jan; 22(1):106-15. PubMed ID: 16378408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface.
    Simonsen AC; Hansen PL; Klösgen B
    J Colloid Interface Sci; 2004 May; 273(1):291-9. PubMed ID: 15051463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Refractive index of thin, aqueous films between hydrophobic surfaces studied using evanescent wave atomic force microscopy.
    McKee CT; Ducker WA
    Langmuir; 2005 Dec; 21(26):12153-9. PubMed ID: 16342987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscopic visualization of insect cell-bubble interactions. I: Rising bubbles, air-medium interface, and the foam layer.
    Bavarian F; Fan LS; Chalmers JJ
    Biotechnol Prog; 1991; 7(2):140-50. PubMed ID: 1367169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Studies on Interaction between Air Bubbles and Hydrophobic Mineral Particles Covered by Nonpolar Oil.
    Song S; Lopez-Valdivieso A
    J Colloid Interface Sci; 1999 Apr; 212(1):42-48. PubMed ID: 10072273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Observation of Foam Film Rupture by Several Types of Antifoams Using a Scanning Laser Microscope.
    Tamura T; Kageyama M; Kaneko Y; Kishino T; Nikaido M
    J Colloid Interface Sci; 1999 May; 213(1):179-186. PubMed ID: 10191020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scale dependence of bubble creation mechanisms in breaking waves.
    Deane GB; Stokes MD
    Nature; 2002 Aug; 418(6900):839-44. PubMed ID: 12192401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles.
    Liang Ling WY; Ng TW; Neild A; Zheng Q
    J Colloid Interface Sci; 2011 Feb; 354(2):832-42. PubMed ID: 21146828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact angle and stability of interfacial nanobubbles.
    Ducker WA
    Langmuir; 2009 Aug; 25(16):8907-10. PubMed ID: 19624143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.