These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15051719)

  • 1. Quantitative 2H NMR at natural abundance can distinguish the pathway used for glucose fermentation by lactic acid bacteria.
    Roger O; Lavigne R; Mahmoud M; Buisson C; Onno B; Zhang BL; Robins RJ
    J Biol Chem; 2004 Jun; 279(24):24923-8. PubMed ID: 15051719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-equivalence of hydrogen transfer from glucose to the pro-R and pro-S methylene positions of ethanol during fermentation by Leuconostoc mesenteroides quantified by 2H NMR at natural abundance.
    Robins RJ; Pétavy F; Nemmaoui Y; Ayadi F; Silvestre V; Zhang BL
    J Biol Chem; 2008 Apr; 283(15):9704-12. PubMed ID: 18258593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited.
    Bayle K; Akoka S; Remaud GS; Robins RJ
    J Biol Chem; 2015 Feb; 290(7):4118-28. PubMed ID: 25538251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux in glucose/citrate co-fermentation by lactic acid bacteria as measured by isotopic ratio analysis.
    Goupry S; Croguennec T; Gentil E; Robins RJ
    FEMS Microbiol Lett; 2000 Jan; 182(2):207-11. PubMed ID: 10620667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis.
    Shinkawa S; Okano K; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1537-44. PubMed ID: 21637940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and frequency distribution of species of lactic acid bacteria involved in the processing of mawè, a fermented maize dough from Benin.
    Hounhouigan DJ; Nout MJ; Nago CM; Houben JH; Rombouts FM
    Int J Food Microbiol; 1993 Jun; 18(4):279-87. PubMed ID: 8347427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 12. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate.
    Wu H; Zhao Y; Du Y; Miao S; Liu J; Li Y; Caiyin Q; Qiao J
    J Dairy Sci; 2018 Aug; 101(8):6872-6884. PubMed ID: 29778478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial succession and metabolite changes during long-term storage of Kimchi.
    Jeong SH; Lee SH; Jung JY; Choi EJ; Jeon CO
    J Food Sci; 2013 May; 78(5):M763-9. PubMed ID: 23550842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylooligosaccharide fermentation with Leuconostoc lactis.
    Ohara H; Owaki M; Sonomoto K
    J Biosci Bioeng; 2006 May; 101(5):415-20. PubMed ID: 16781471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose metabolism and internal pH of Lactococcus lactis subsp. lactis cells utilizing NMR spectroscopy.
    Foucaud C; Herve M; Neumann JM; Hemme D
    Lett Appl Microbiol; 1995 Jul; 21(1):10-3. PubMed ID: 7662330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.
    Oh E; Lu M; Park C; Park C; Oh HB; Lee SY; Lee J
    J Microbiol Biotechnol; 2011 Feb; 21(2):162-9. PubMed ID: 21364298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos.
    Miranda M; Ramos A; Veiga-da-Cunha M; Loureiro-Dias MC; Santos H
    J Bacteriol; 1997 Sep; 179(17):5347-54. PubMed ID: 9286987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk.
    Wang SY; Chen HC; Dai TY; Huang IN; Liu JR; Chen MJ
    J Dairy Sci; 2011 Feb; 94(2):623-35. PubMed ID: 21257031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.