BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 15051878)

  • 21. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation.
    Agerbirk N; Olsen CE; Poulsen E; Jacobsen N; Hansen PR
    Insect Biochem Mol Biol; 2010 Feb; 40(2):126-37. PubMed ID: 20079434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.
    Stauber EJ; Kuczka P; van Ohlen M; Vogt B; Janowitz T; Piotrowski M; Beuerle T; Wittstock U
    PLoS One; 2012; 7(4):e35545. PubMed ID: 22536404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Host plant-dependent metabolism of 4-hydroxybenzylglucosinolate in Pieris rapae: substrate specificity and effects of genetic modification and plant nitrile hydratase.
    Agerbirk N; Olsen CE; Topbjerg HB; Sørensen JC
    Insect Biochem Mol Biol; 2007 Nov; 37(11):1119-30. PubMed ID: 17916498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ
    Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases.
    Sporer T; Körnig J; Wielsch N; Gebauer-Jung S; Reichelt M; Hupfer Y; Beran F
    Front Plant Sci; 2021; 12():645030. PubMed ID: 34093609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis.
    Bodenhausen N; Reymond P
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1406-20. PubMed ID: 17977152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores.
    Schramm K; Vassão DG; Reichelt M; Gershenzon J; Wittstock U
    Insect Biochem Mol Biol; 2012 Mar; 42(3):174-82. PubMed ID: 22193392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silencing defense pathways in Arabidopsis by heterologous gene sequences from Brassica oleracea enhances the performance of a specialist and a generalist herbivorous insect.
    Zheng SJ; Zhang PJ; van Loon JJ; Dicke M
    J Chem Ecol; 2011 Aug; 37(8):818-29. PubMed ID: 21691809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.
    Beran F; Pauchet Y; Kunert G; Reichelt M; Wielsch N; Vogel H; Reinecke A; Svatoš A; Mewis I; Schmid D; Ramasamy S; Ulrichs C; Hansson BS; Gershenzon J; Heckel DG
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7349-54. PubMed ID: 24799680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways.
    Mewis I; Tokuhisa JG; Schultz JC; Appel HM; Ulrichs C; Gershenzon J
    Phytochemistry; 2006 Nov; 67(22):2450-62. PubMed ID: 17049571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyanide detoxification in an insect herbivore: Molecular identification of β-cyanoalanine synthases from Pieris rapae.
    van Ohlen M; Herfurth AM; Kerbstadt H; Wittstock U
    Insect Biochem Mol Biol; 2016 Mar; 70():99-110. PubMed ID: 26714205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.
    De Vos M; Van Oosten VR; Van Poecke RM; Van Pelt JA; Pozo MJ; Mueller MJ; Buchala AJ; Métraux JP; Van Loon LC; Dicke M; Pieterse CM
    Mol Plant Microbe Interact; 2005 Sep; 18(9):923-37. PubMed ID: 16167763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.
    Müller C; van Loon J; Ruschioni S; De Nicola GR; Olsen CE; Iori R; Agerbirk N
    Phytochemistry; 2015 Oct; 118():139-48. PubMed ID: 26318325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure at 1.1 Angstroms resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to beta-glucosidases.
    Husebye H; Arzt S; Burmeister WP; Härtel FV; Brandt A; Rossiter JT; Bones AM
    Insect Biochem Mol Biol; 2005 Dec; 35(12):1311-20. PubMed ID: 16291087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae.
    Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C
    Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).
    Kim JH; Lee BW; Schroeder FC; Jander G
    Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense.
    Levy M; Wang Q; Kaspi R; Parrella MP; Abel S
    Plant J; 2005 Jul; 43(1):79-96. PubMed ID: 15960618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular cloning of apoptosis-inducing Pierisin-like proteins, from two species of white butterfly, Pieris melete and Aporia crataegi.
    Yamamoto M; Nakano T; Matsushima-Hibiya Y; Totsuka Y; Takahashi-Nakaguchi A; Matsumoto Y; Sugimura T; Wakabayashi K
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Nov; 154(3):326-33. PubMed ID: 19631761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana.
    Kissen R; Bones AM
    J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.
    Zhang W; Wang W; Liu Z; Xie Y; Wang H; Mu Y; Huang Y; Feng Y
    Biochem Biophys Res Commun; 2016 Sep; 478(2):746-51. PubMed ID: 27498030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.