These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15052307)

  • 1. Role of Ba2+-resistant K+ channels in endothelium-dependent hyperpolarization of rat small mesenteric arteries.
    Breyne J; Vanheel BJ
    Can J Physiol Pharmacol; 2004 Jan; 82(1):65-71. PubMed ID: 15052307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries.
    Chataigneau T; Félétou M; Thollon C; Villeneuve N; Vilaine JP; Duhault J; Vanhoutte PM
    Br J Pharmacol; 1998 Mar; 123(5):968-74. PubMed ID: 9535027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-dependent hyperpolarization in small gastric arteries.
    Vanheel B; Breyne J
    Cardiovasc Res; 2004 Aug; 63(2):331-7. PubMed ID: 15249191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cilostamide produces hyperpolarization associated with K(ATP) channel activation, but does not augment endothelium-derived hyperpolarization in rat mesenteric arteries.
    Kansui Y; Goto K; Fujii K; Oniki H; Matsumura K; Iida M
    Clin Exp Pharmacol Physiol; 2009 Jul; 36(7):729-33. PubMed ID: 19207721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery.
    Crane GJ; Gallagher N; Dora KA; Garland CJ
    J Physiol; 2003 Nov; 553(Pt 1):183-9. PubMed ID: 14555724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of chloride channels reveals relaxations of rat small mesenteric arteries to raised potassium.
    Doughty JM; Boyle JP; Langton PD
    Br J Pharmacol; 2001 Jan; 132(1):293-301. PubMed ID: 11156589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries.
    McSherry IN; Spitaler MM; Takano H; Dora KA
    Cell Calcium; 2005 Jul; 38(1):23-33. PubMed ID: 15907999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease.
    Coleman HA; Tare M; Parkington HC
    Clin Exp Pharmacol Physiol; 2004 Sep; 31(9):641-9. PubMed ID: 15479173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarization of murine small caliber mesenteric arteries by activation of endothelial proteinase-activated receptor 2.
    McGuire JJ; Hollenberg MD; Bennett BM; Triggle CR
    Can J Physiol Pharmacol; 2004 Dec; 82(12):1103-12. PubMed ID: 15644953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide induced membrane hyperpolarization in the rat aorta is not mediated by glibenclamide-sensitive potassium channels.
    Vanheel B; Van de Voorde J
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1387-92. PubMed ID: 9534950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of insulin on the acetylcholine-induced hyperpolarization in the guinea pig mesenteric arterioles.
    Imaeda K; Okayama N; Okouchi M; Omi H; Kato T; Akao M; Imai S; Uranishi H; Takeuchi Y; Ohara H; Fukutomi T; Joh T; Itoh M
    J Diabetes Complications; 2004; 18(6):356-62. PubMed ID: 15531186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barium decreases endothelium-dependent smooth muscle responses to transient but not to more prolonged acetylcholine applications.
    Vanheel B; Van de Voorde J
    Pflugers Arch; 1999 Dec; 439(1-2):123-9. PubMed ID: 10651008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries.
    Wu CC; Chen SJ; Garland CJ
    Br J Pharmacol; 2004 Jun; 142(3):479-84. PubMed ID: 15148259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries.
    Edwards G; Félétou M; Gardener MJ; Thollon C; Vanhoutte PM; Weston AH
    Br J Pharmacol; 1999 Dec; 128(8):1788-94. PubMed ID: 10588935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel activation, hyperpolarization, and vascular relaxation.
    Siegel G; Walter A; Schnalke F; Schmidt A; Buddecke E; Loirand G; Stock G
    Z Kardiol; 1991; 80 Suppl 7():9-24. PubMed ID: 1724332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure.
    Taylor MS; Bonev AD; Gross TP; Eckman DM; Brayden JE; Bond CT; Adelman JP; Nelson MT
    Circ Res; 2003 Jul; 93(2):124-31. PubMed ID: 12805243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The third pathway: endothelium-dependent hyperpolarization.
    Félétou M; Vanhoutte PM
    J Physiol Pharmacol; 1999 Dec; 50(4):525-34. PubMed ID: 10639003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+-induced hyperpolarization in rat mesenteric artery: identification, localization and role of Na+/K+-ATPases.
    Weston AH; Richards GR; Burnham MP; Félétou M; Vanhoutte PM; Edwards G
    Br J Pharmacol; 2002 Jul; 136(6):918-26. PubMed ID: 12110616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical role of gap junctions in endothelium-dependent hyperpolarization in rat mesenteric arteries.
    Goto K; Fujii K; Kansui Y; Abe I; Iida M
    Clin Exp Pharmacol Physiol; 2002 Jul; 29(7):595-602. PubMed ID: 12060103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hyperpolarization caused by high salt diet on β-adrenoceptor-mediated responses in rat pulmonary artery.
    Mahajan P; Tabrizchi R
    J Cardiovasc Pharmacol; 2012 Jul; 60(1):23-32. PubMed ID: 22441303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.