These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15052612)

  • 1. Development of acute inhalation reference exposure levels (RELs) to protect the public from predictable excursions of airborne toxicants.
    Collins JF; Alexeeff GV; Lewis DC; Dodge DE; Marty MA; Parker TR; Budroe JD; Lam RH; Lipsett MJ; Fowles JR; Das R
    J Appl Toxicol; 2004; 24(2):155-66. PubMed ID: 15052612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhalation of an essential metal: development of reference exposure levels for manganese.
    Winder BS; Salmon AG; Marty MA
    Regul Toxicol Pharmacol; 2010; 57(2-3):195-9. PubMed ID: 20176068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Health assessment of phosgene: approaches for derivation of reference concentration.
    Gift JS; McGaughy R; Singh DV; Sonawane B
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):98-107. PubMed ID: 18440110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A procedure for developing risk-based reference doses.
    Gaylor DW; Kodell RL
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):137-41. PubMed ID: 12051999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of acute inhalation toxicity for chemicals with limited toxicity information.
    Grant RL; Kadlubar BJ; Erraguntla NK; Honeycutt M
    Regul Toxicol Pharmacol; 2007 Apr; 47(3):261-73. PubMed ID: 17275156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of acute exposure guideline levels for airborne exposures to hazardous substances.
    Krewski D; Bakshi K; Garrett R; Falke E; Rusch G; Gaylor D
    Regul Toxicol Pharmacol; 2004 Apr; 39(2):184-201. PubMed ID: 15041148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute inhalative exposure assessment: derivation of guideline levels with special regard to sensitive subpopulations and time scaling.
    Mielke H; Gundert A; Abraham K; Gundert-Remy U
    Toxicology; 2005 Oct; 214(3):256-67. PubMed ID: 16055256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical risk assessment and uncertainty associated with extrapolation across exposure duration.
    Pohl HR; Chou CH; Ruiz P; Holler JS
    Regul Toxicol Pharmacol; 2010 Jun; 57(1):18-23. PubMed ID: 19944126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concepts of exposure analysis for consumer risk assessment.
    Heinemeyer G
    Exp Toxicol Pathol; 2008 Jun; 60(2-3):207-12. PubMed ID: 18424011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. US EPA's acute reference exposure methodology for acute inhalation exposures.
    Strickland JA; Foureman GL
    Sci Total Environ; 2002 Apr; 288(1-2):51-63. PubMed ID: 12013548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deriving a data-based interspecies assessment factor using the NOAEL and the benchmark dose approach.
    Bokkers BG; Slob W
    Crit Rev Toxicol; 2007 Jun; 37(5):355-73. PubMed ID: 17612951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing a point of departure for risk assessment using acute inhalation toxicology data.
    Rusch GM; Bast CB; Cavender FL
    Regul Toxicol Pharmacol; 2009 Aug; 54(3):247-55. PubMed ID: 19427887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute health reference values: overview, perspective, and current forecast of needs.
    Woodall GM
    J Toxicol Environ Health A; 2005 Jun 11-25; 68(11-12):901-26. PubMed ID: 16020184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity.
    Arts JH; Rennen MA; de Heer C
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):144-60. PubMed ID: 16413643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing uncertainty factors in minimal risk levels derivation.
    Pohl HR; Abadin HG
    Regul Toxicol Pharmacol; 1995 Oct; 22(2):180-8. PubMed ID: 8577953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury vapour (Hg(0)): Continuing toxicological uncertainties, and establishing a Canadian reference exposure level.
    Richardson GM; Brecher RW; Scobie H; Hamblen J; Samuelian J; Smith C
    Regul Toxicol Pharmacol; 2009 Feb; 53(1):32-8. PubMed ID: 18992295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.