BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 15052631)

  • 21. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae.
    Ferreira Júnior JR; Ramos AS; Chambergo FS; Stambuk BU; Muschellack LK; Schumacher R; El-Dorry H
    Biochem Biophys Res Commun; 2006 Jan; 339(1):30-6. PubMed ID: 16297867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.
    van Bakel H; Strengman E; Wijmenga C; Holstege FC
    Physiol Genomics; 2005 Aug; 22(3):356-67. PubMed ID: 15886332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.
    Nishizawa M; Katou Y; Shirahige K; Toh-e A
    Yeast; 2004 Aug; 21(11):903-18. PubMed ID: 15334555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the similarity of time-series gene expression using signal processing metrics.
    Butte AJ; Bao L; Reis BY; Watkins TW; Kohane IS
    J Biomed Inform; 2001 Dec; 34(6):396-405. PubMed ID: 12198759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii.
    Alves-Araújo C; Hernandez-Lopez MJ; Prieto JA; Randez-Gil F; Sousa MJ
    Yeast; 2005 Feb; 22(3):165-75. PubMed ID: 15704215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New weakly expressed cell cycle-regulated genes in yeast.
    de Lichtenberg U; Wernersson R; Jensen TS; Nielsen HB; Fausbøll A; Schmidt P; Hansen FB; Knudsen S; Brunak S
    Yeast; 2005 Nov; 22(15):1191-201. PubMed ID: 16278933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correcting the loss of cell-cycle synchrony in clustering analysis of microarray data using weights.
    Duan F; Zhang H
    Bioinformatics; 2004 Jul; 20(11):1766-71. PubMed ID: 15166015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-clustering and visualization of gene expression data and gene ontology terms for Saccharomyces cerevisiae using self-organizing maps.
    Brameier M; Wiuf C
    J Biomed Inform; 2007 Apr; 40(2):160-73. PubMed ID: 16824804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MARD: a new method to detect differential gene expression in treatment-control time courses.
    Cheng C; Ma X; Yan X; Sun F; Li LM
    Bioinformatics; 2006 Nov; 22(21):2650-7. PubMed ID: 16928738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression profiling using a hexamer-based universal microarray.
    Roth ME; Feng L; McConnell KJ; Schaffer PJ; Guerra CE; Affourtit JP; Piper KR; Guccione L; Hariharan J; Ford MJ; Powell SW; Krishnaswamy H; Lane J; Guccione L; Intrieri G; Merkel JS; Perbost C; Valerio A; Zolla B; Graham CD; Hnath J; Michaelson C; Wang R; Ying B; Halling C; Parman CE; Raha D; Orr B; Jedrzkiewicz B; Liao J; Tevelev A; Mattessich MJ; Kranz DM; Lacey M; Kaufman JC; Kim J; Latimer DR; Lizardi PM
    Nat Biotechnol; 2004 Apr; 22(4):418-26. PubMed ID: 15024387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Regulatory circuits for gene expression: the metabolism of galactose and phosphate in Saccharomyces cerevisiae].
    Oshima Y; Tohe A; Matsumoto K
    Tanpakushitsu Kakusan Koso; 1984 Jan; 29(1):14-28. PubMed ID: 6369399
    [No Abstract]   [Full Text] [Related]  

  • 33. Real-time PCR analysis of carbon catabolite repression of cellobiose dehydrogenase gene transcription in Trametes versicolor.
    Stapleton PC; O'Mahony J; Dobson AD
    Can J Microbiol; 2004 Feb; 50(2):113-9. PubMed ID: 15052313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.
    Imoto S; Kim S; Goto T; Miyano S; Aburatani S; Tashiro K; Kuhara S
    J Bioinform Comput Biol; 2003 Jul; 1(2):231-52. PubMed ID: 15290771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm.
    Wang SC
    J Bioinform Comput Biol; 2004 Sep; 2(3):441-58. PubMed ID: 15359420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clustering of gene expression data using a local shape-based similarity measure.
    Balasubramaniyan R; Hüllermeier E; Weskamp N; Kämper J
    Bioinformatics; 2005 Apr; 21(7):1069-77. PubMed ID: 15513997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Hidden Markov Model approach to predicting yeast gene function from sequential gene expression data.
    Deng X; Geng H; Ali HH
    Int J Bioinform Res Appl; 2008; 4(3):263-73. PubMed ID: 18640903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering molecular pathways from protein interaction and gene expression data.
    Segal E; Wang H; Koller D
    Bioinformatics; 2003; 19 Suppl 1():i264-71. PubMed ID: 12855469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of genomic signal processing for microarray data clustering.
    Istepanian RS; Sungoor A; Nebel JC
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):225-38. PubMed ID: 22157075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.