These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 15052640)
1. Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Bapat PM; Wangikar PP Biotechnol Bioeng; 2004 Apr; 86(2):201-8. PubMed ID: 15052640 [TBL] [Abstract][Full Text] [Related]
2. Development of balanced medium composition for improved rifamycin B production by isolated Amycolatopsis sp. RSP-3. Mahalaxmi Y; Sathish T; Prakasham RS Lett Appl Microbiol; 2009 Nov; 49(5):533-8. PubMed ID: 19793193 [TBL] [Abstract][Full Text] [Related]
3. Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei. Jin ZH; Lin JP; Cen PL J Zhejiang Univ Sci; 2004 Dec; 5(12):1590-6. PubMed ID: 15547969 [TBL] [Abstract][Full Text] [Related]
4. A cybernetic model to predict the effect of freely available nitrogen substrate on rifamycin B production in complex media. Bapat PM; Sohoni SV; Moses TA; Wangikar PP Appl Microbiol Biotechnol; 2006 Oct; 72(4):662-70. PubMed ID: 16534611 [TBL] [Abstract][Full Text] [Related]
5. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation. Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259 [TBL] [Abstract][Full Text] [Related]
7. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online. Bapat PM; Das D; Dave NN; Wangikar PP J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217 [TBL] [Abstract][Full Text] [Related]
8. Medium optimization for the production of cyclic adenosine 3',5'-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Chen XC; Bai JX; Cao JM; Li ZJ; Xiong J; Zhang L; Hong Y; Ying HJ Bioresour Technol; 2009 Jan; 100(2):919-24. PubMed ID: 18778935 [TBL] [Abstract][Full Text] [Related]
9. Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei. Priscila G; Fernández FJ; Absalón AE; Suarez Mdel R; Sainoz M; Barrios-González J; Mejía A J Biosci Bioeng; 2008 Nov; 106(5):493-7. PubMed ID: 19111646 [TBL] [Abstract][Full Text] [Related]
10. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: a case study with rifamycin B fermentation. Doan XT; Srinivasan R; Bapat PM; Wangikar PP J Biotechnol; 2007 Oct; 132(2):156-66. PubMed ID: 17673325 [TBL] [Abstract][Full Text] [Related]
11. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Nagavalli M; Ponamgi SP; Girijashankar V; Venkateswar Rao L Lett Appl Microbiol; 2015 Jan; 60(1):44-51. PubMed ID: 25256628 [TBL] [Abstract][Full Text] [Related]
12. Improvement of industry-applied rifamycin B-producing strain, Amycolatopsis mediterranei, by rational screening. Jin ZH; Lin JP; Xu ZN; Cen PL J Gen Appl Microbiol; 2002 Dec; 48(6):329-34. PubMed ID: 12682871 [TBL] [Abstract][Full Text] [Related]
13. Effect of uracil on rifamycin SV production by Amycolatopsis mediterranei MV35R. Murali Krishna PS; Venkateswarlu G; Venkateswar Rao L Lett Appl Microbiol; 2000 Jul; 31(1):73-6. PubMed ID: 10886619 [TBL] [Abstract][Full Text] [Related]
14. An integrated approach to optimization of Escherichia coli fermentations using historical data. Coleman MC; Buck KK; Block DE Biotechnol Bioeng; 2003 Nov; 84(3):274-85. PubMed ID: 12968281 [TBL] [Abstract][Full Text] [Related]
15. Using highly efficient nonlinear experimental design methods for optimization of Lactococcus lactis fermentation in chemically defined media. Zhang G; Block DE Biotechnol Prog; 2009; 25(6):1587-97. PubMed ID: 19725126 [TBL] [Abstract][Full Text] [Related]
16. Improvement of rifemycins production by Amycolatopsis mediterranei in batch and fed-batch cultures. El-Enshasy HA; Beshay UI; El-Diwany AI; Omar HM; El-Kholy AG; El-Najar R Acta Microbiol Pol; 2003; 52(3):301-13. PubMed ID: 14743983 [TBL] [Abstract][Full Text] [Related]
17. Whole genome sequence of the rifamycin B-producing strain Amycolatopsis mediterranei S699. Verma M; Kaur J; Kumar M; Kumari K; Saxena A; Anand S; Nigam A; Ravi V; Raghuvanshi S; Khurana P; Tyagi AK; Khurana JP; Lal R J Bacteriol; 2011 Oct; 193(19):5562-3. PubMed ID: 21914879 [TBL] [Abstract][Full Text] [Related]
18. Ant colony system algorithm for the optimization of beer fermentation control. Xiao J; Zhou ZK; Zhang GX J Zhejiang Univ Sci; 2004 Dec; 5(12):1597-603. PubMed ID: 15547970 [TBL] [Abstract][Full Text] [Related]
19. Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Zhao W; Zhong Y; Yuan H; Wang J; Zheng H; Wang Y; Cen X; Xu F; Bai J; Han X; Lu G; Zhu Y; Shao Z; Yan H; Li C; Peng N; Zhang Z; Zhang Y; Lin W; Fan Y; Qin Z; Hu Y; Zhu B; Wang S; Ding X; Zhao GP Cell Res; 2010 Oct; 20(10):1096-108. PubMed ID: 20567260 [TBL] [Abstract][Full Text] [Related]
20. Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. He L; Xu YQ; Zhang XH Biotechnol Bioeng; 2008 Jun; 100(2):250-9. PubMed ID: 18078294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]