BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15052643)

  • 1. High-rate sulfate reduction at high salinity (up to 90 mS.cm(-1)) in mesophilic UASB reactors.
    Vallero MV; Sipma J; Lettinga G; Lens PN
    Biotechnol Bioeng; 2004 Apr; 86(2):226-35. PubMed ID: 15052643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.
    Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of high salinity on the fate of methanol during the start-up of thermophilic (55 degrees C) sulfate reducing reactors.
    Vallero MV; Hulshoff Pol LW; Lens PN; Lettinga G
    Water Sci Technol; 2002; 45(10):121-6. PubMed ID: 12188531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor.
    Weijma J; Stams AJ; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2000 Feb; 67(3):354-63. PubMed ID: 10620266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate reduction at pH 4 during the thermophilic (55 degrees C) acidification of sucrose in UASB reactors.
    Lopes SI; Capela MI; Dar SA; Muyzer G; Lens PN
    Biotechnol Prog; 2008; 24(6):1278-89. PubMed ID: 19194942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol and toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate.
    Cattony EB; Chinalia FA; Ribeiro R; Zaiat M; Foresti E; Varesche MB
    Biotechnol Bioeng; 2005 Jul; 91(2):244-53. PubMed ID: 15915510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions.
    Ismail SB; de La Parra CJ; Temmink H; van Lier JB
    Water Res; 2010 Mar; 44(6):1909-17. PubMed ID: 20015531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. II: effect of sulfide and COD/SO(2-)(4) ratio.
    Lopes SI; Capela MI; Lens PN
    Bioresour Technol; 2010 Jun; 101(12):4278-84. PubMed ID: 20171883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of methanol degradation in UASB reactors: in situ versus pre-loading cobalt on anaerobic granular sludge.
    Zandvoort MH; Gieteling J; Lettinga G; Lens PN
    Biotechnol Bioeng; 2004 Sep; 87(7):897-904. PubMed ID: 15334416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously.
    Kyazze G; Dinsdale R; Guwy AJ; Hawkes FR; Premier GC; Hawkes DL
    Biotechnol Bioeng; 2007 Jul; 97(4):759-70. PubMed ID: 17163512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a pilot-scale sewage treatment: an up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactors combined system by sulfur-redox reaction process under low-temperature conditions.
    Takahashi M; Yamaguchi T; Kuramoto Y; Nagano A; Shimozaki S; Sumino H; Araki N; Yamazaki S; Kawakami S; Harada H
    Bioresour Technol; 2011 Jan; 102(2):753-7. PubMed ID: 20888756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors.
    Celis-García LB; Razo-Flores E; Monroy O
    Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of UASB reactors treating high-strength wastewaters.
    Aslan S; Sekerdağ N
    J Environ Health; 2008; 70(6):32-6, 51, 55. PubMed ID: 18236935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficacy of ozone as a pre- and post-treatment option for UASB-treated food processing wastewaters.
    Sigge GO; Britz TJ; Fourie PC; Barnardt CA
    Water Sci Technol; 2005; 52(1-2):167-73. PubMed ID: 16180424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate reduction in methanol and formate-fed UASB reactors.
    Vallero MV; Camarero E; Lettinga G; Lens PN
    Biotechnol Prog; 2004; 20(5):1382-92. PubMed ID: 15458321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of volatile fatty acid profile on the metabolic pathway during continuous sulfate reduction.
    Bertolino SM; Rodrigues IC; Guerra-Sá R; Aquino SF; Leão VA
    J Environ Manage; 2012 Jul; 103():15-23. PubMed ID: 22459067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfidogenic volatile fatty acid degradation in a baffled reactor.
    Vallero MV; Lens PN; Bakker C; Lettinga G
    Water Sci Technol; 2003; 48(3):81-8. PubMed ID: 14518858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of anaerobic treatment: thermophilic and propionate implications.
    Speece RE; Boonyakitsombut S; Kim M; Azbar N; Ursillo P
    Water Environ Res; 2006 May; 78(5):460-73. PubMed ID: 16752608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge.
    Gonzalez-Silva BM; Briones-Gallardo R; Razo-Flores E; Celis LB
    J Hazard Mater; 2009 Dec; 172(1):400-7. PubMed ID: 19695775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor.
    Kleerebezem R; Beckers J; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2005 Jul; 91(2):169-79. PubMed ID: 15889396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.