BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 15053098)

  • 1. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States.
    Puckett LJ
    Water Sci Technol; 2004; 49(3):47-53. PubMed ID: 15053098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected hydrogeologic settings of the North Carolina Coastal Plain.
    Spruill TB
    Water Sci Technol; 2004; 49(3):63-70. PubMed ID: 15053100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands.
    Hefting M; Beltman B; Karssenberg D; Rebel K; van Riessen M; Spijker M
    Environ Pollut; 2006 Jan; 139(1):143-56. PubMed ID: 15996804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.
    Böhlke JK; O'Connell ME; Prestegaard KL
    J Environ Qual; 2007; 36(3):664-80. PubMed ID: 17412903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek watershed in Iowa, USA.
    Simpkins WW; Wineland TR; Andress RJ; Johnston DA; Caron GC; Isenhart TM; Schultz RC
    Water Sci Technol; 2002; 45(9):61-8. PubMed ID: 12079125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes.
    Puckett LJ; Hughes WB
    J Environ Qual; 2005; 34(6):2278-92. PubMed ID: 16275729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate movement in shallow ground water from swine-lagoon-effluent spray fields managed under current application regulations.
    Israel DW; Showers WJ; Fountain M; Fountain J
    J Environ Qual; 2005; 34(5):1828-42. PubMed ID: 16151235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking ground-water age and chemistry data along flow paths: implications for trends and transformations of nitrate and pesticides.
    Tesoriero AJ; Saad DA; Burow KR; Frick EA; Puckett LJ; Barbash JE
    J Contam Hydrol; 2007 Oct; 94(1-2):139-55. PubMed ID: 17651860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrate retention in riparian ground water at natural and elevated nitrate levels in north central Minnesota.
    Duff JH; Jackman AP; Triska FJ; Sheibley RW; Avanzino RJ
    J Environ Qual; 2007; 36(2):343-53. PubMed ID: 17255621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foreword: ground water in arid zones.
    Hibbs BJ
    Ground Water; 2008; 46(3):345-8. PubMed ID: 18384600
    [No Abstract]   [Full Text] [Related]  

  • 12. Denitrification during vertical upwelling at an alluvium-diluvium interface below the upland perimeter of a riparian paddy.
    Eguchi S; Nakajima Y; Yabusaki S; Kasuya M; Shibayama H; Tsunekawa A; Imai K
    J Environ Qual; 2009; 38(6):2198-209. PubMed ID: 19875775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of ground-water quality trends and comparison to other national programs.
    Rosen MR; Lapham WW
    J Environ Qual; 2008; 37(5 Suppl):S190-8. PubMed ID: 18765765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-decadal changes in nitrate and pesticide concentrations in the South Platte River alluvial aquifer, 1993-2004.
    Paschke SS; Schaffrath KR; Mashburn SL
    J Environ Qual; 2008; 37(5 Suppl):S281-95. PubMed ID: 18765774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater-borne nitrate intakes into surface waters in Germany.
    Kunkel R; Bach M; Behrendt H; Wendland F
    Water Sci Technol; 2004; 49(3):11-9. PubMed ID: 15053094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying riparian sinks for watershed nitrate using soil surveys.
    Rosenblatt AE; Gold AJ; Stolt MH; Groffman PM; Kellogg DQ
    J Environ Qual; 2001; 30(5):1596-604. PubMed ID: 11577865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis of nitrogen removal in riparian buffers.
    Mayer PM; Reynolds SK; McCutchen MD; Canfield TJ
    J Environ Qual; 2007; 36(4):1172-80. PubMed ID: 17596626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and fate of nitrate at the ground-water/surface-water interface.
    Puckett LJ; Zamora C; Essaid H; Wilson JT; Johnson HM; Brayton MJ; Vogel JR
    J Environ Qual; 2008; 37(3):1034-50. PubMed ID: 18453426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate in groundwater: an isotopic multi-tracer approach.
    Widory D; Kloppmann W; Chery L; Bonnin J; Rochdi H; Guinamant JL
    J Contam Hydrol; 2004 Aug; 72(1-4):165-88. PubMed ID: 15240171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport and reduction of nitrate in clayey till underneath forest and arable land.
    Jørgensen PR; Urup J; Helstrup T; Jensen MB; Eiland F; Vinther FP
    J Contam Hydrol; 2004 Sep; 73(1-4):207-26. PubMed ID: 15336795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.