BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15053316)

  • 21. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.
    Tsai YK; Chen HW; Lo TC; Lin TH
    Microbiology (Reading); 2009 Mar; 155(Pt 3):751-760. PubMed ID: 19246746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Kuipers OP
    Appl Environ Microbiol; 2014 Sep; 80(17):5349-58. PubMed ID: 24951784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1.
    Tsai YK; Lin TH
    J Appl Microbiol; 2006 Mar; 100(3):446-59. PubMed ID: 16478484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and epidemiological characterization of Streptococcus uberis isolated from bovine mastitis using conventional and molecular methods.
    Khan IU; Hassan AA; Abdulmawjood A; Lämmler C; Wolter W; Zschöck M
    J Vet Sci; 2003 Dec; 4(3):213-24. PubMed ID: 14685025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain.
    Rhimi M; Boisson A; Dejob M; Boudebouze S; Maguin E; Haser R; Aghajari N
    Res Microbiol; 2010 Sep; 161(7):515-25. PubMed ID: 20472057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk.
    Hu T; Zhang Y; Cui Y; Zhao C; Jiang X; Zhu X; Wang Y; Qu X
    Arch Microbiol; 2018 May; 200(4):567-580. PubMed ID: 29236144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence heterogeneity in the lacSZ operon of Streptococcus thermophilus and its use in PCR systems for strain differentiation.
    Ercolini D; Fusco V; Blaiotta G; Coppola S
    Res Microbiol; 2005 Mar; 156(2):161-72. PubMed ID: 15748980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two gene clusters coordinate galactose and lactose metabolism in Streptococcus gordonii.
    Zeng L; Martino NC; Burne RA
    Appl Environ Microbiol; 2012 Aug; 78(16):5597-605. PubMed ID: 22660715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of sugar transporter on galactose utilization in
    Zhao J; Liang Y; Zhang S; Xu Z
    Front Microbiol; 2023; 14():1267237. PubMed ID: 38075912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel escherichia coli strain allows efficient recombinant protein production using lactose as inducer.
    Menzella HG; Ceccarelli EA; Gramajo HC
    Biotechnol Bioeng; 2003 Jun; 82(7):809-17. PubMed ID: 12701147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Galactose transport in Streptococcus thermophilus.
    Hutkins R; Morris HA; McKay LL
    Appl Environ Microbiol; 1985 Oct; 50(4):772-6. PubMed ID: 4083879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment.
    Jans C; Follador R; Hochstrasser M; Lacroix C; Meile L; Stevens MJ
    BMC Genomics; 2013 Mar; 14():200. PubMed ID: 23521820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarity effects in the lactose operon of Escherichia coli.
    Li Y; Altman S
    J Mol Biol; 2004 May; 339(1):31-9. PubMed ID: 15123418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection of Galactose-Fermenting Streptococcus thermophilus in Lactose-Limited Chemostat Cultures.
    Thomas TD; Crow VL
    Appl Environ Microbiol; 1984 Jul; 48(1):186-91. PubMed ID: 16346586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The non-inducible nature of super-repressors of the gal operon in Escherichia coli.
    Zhou YN; Chatterjee S; Roy S; Adhya S
    J Mol Biol; 1995 Oct; 253(3):414-25. PubMed ID: 7473724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic diversity in the lactose operons of Lactobacillus helveticus strains and its relationship to the role of these strains as commercial starter cultures.
    Callanan MJ; Beresford TP; Ross RP
    Appl Environ Microbiol; 2005 Mar; 71(3):1655-8. PubMed ID: 15746373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Identification of Lactobacillus and Streptococcus thermophilus by PCR amplification and sequence analysis of 16S rRNA].
    Dong Y; Cui S; Li F; Yu H
    Wei Sheng Yan Jiu; 2010 Jul; 39(4):454-8, 465. PubMed ID: 20726237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli.
    Bouffard GG; Rudd KE; Adhya SL
    J Mol Biol; 1994 Dec; 244(3):269-78. PubMed ID: 7966338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans.
    Zeng L; Burne RA
    Mol Microbiol; 2021 Jan; 115(1):70-83. PubMed ID: 32881130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.