These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15053641)

  • 1. Patterning enzymes inside microfluidic channels via photoattachment chemistry.
    Holden MA; Jung SY; Cremer PS
    Anal Chem; 2004 Apr; 76(7):1838-43. PubMed ID: 15053641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct writing of metal nanoparticle films inside sealed microfluidic channels.
    Castellana ET; Kataoka S; Albertorio F; Cremer PS
    Anal Chem; 2006 Jan; 78(1):107-12. PubMed ID: 16383316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The immobilization of proteins on biodegradable fibers via biotin-streptavidin bridges.
    Lu T; Chen X; Shi Q; Wang Y; Zhang P; Jing X
    Acta Biomater; 2008 Nov; 4(6):1770-7. PubMed ID: 18562258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA.
    Herrmann M; Veres T; Tabrizian M
    Lab Chip; 2006 Apr; 6(4):555-60. PubMed ID: 16572219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions.
    Logan TC; Clark DS; Stachowiak TB; Svec F; Fréchet JM
    Anal Chem; 2007 Sep; 79(17):6592-8. PubMed ID: 17658765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned self-assembled beads in silicon channels.
    Andersson H; Jönsson C; Moberg C; Stemme G
    Electrophoresis; 2001 Oct; 22(18):3876-82. PubMed ID: 11700716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds.
    Schröder H; Hoffmann L; Müller J; Alhorn P; Fleger M; Neyer A; Niemeyer CM
    Small; 2009 Jul; 5(13):1547-52. PubMed ID: 19326353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Durable, region-specific protein patterning in microfluidic channels.
    Fiddes LK; Chan HK; Lau B; Kumacheva E; Wheeler AR
    Biomaterials; 2010 Jan; 31(2):315-20. PubMed ID: 19800682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A soft lithographic approach to fabricate patterned microfluidic channels.
    Khademhosseini A; Suh KY; Jon S; Eng G; Yeh J; Chen GJ; Langer R
    Anal Chem; 2004 Jul; 76(13):3675-81. PubMed ID: 15228340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors.
    Qu H; Wang H; Huang Y; Zhong W; Lu H; Kong J; Yang P; Liu B
    Anal Chem; 2004 Nov; 76(21):6426-33. PubMed ID: 15516137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose microfluidic biosensors based on immobilizing glucose oxidase in poly(dimethylsiloxane) electrophoretic microchips.
    Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2006 Nov; 1135(1):122-6. PubMed ID: 17046001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR
    Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy.
    Park T; Lee M; Choo J; Kim YS; Lee EK; Kim DJ; Lee SH
    Appl Spectrosc; 2004 Oct; 58(10):1172-9. PubMed ID: 15527517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A smart surface in a microfluidic chip for controlled protein separation.
    Mu L; Liu Y; Cai S; Kong J
    Chemistry; 2007; 13(18):5113-20. PubMed ID: 17407110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic conductimetric bioreactor.
    Limbut W; Loyprasert S; Thammakhet C; Thavarungkul P; Tuantranont A; Asawatreratanakul P; Limsakul C; Wongkittisuksa B; Kanatharana P
    Biosens Bioelectron; 2007 Jun; 22(12):3064-71. PubMed ID: 17289366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.