These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 15053647)
1. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Kerman K; Saito M; Morita Y; Takamura Y; Ozsoz M; Tamiya E Anal Chem; 2004 Apr; 76(7):1877-84. PubMed ID: 15053647 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive chemiluminescence quantification of single-nucleotide polymorphisms by using monobase-modified Au and CuS nanoparticles. Ding C; Wang Z; Zhong H; Zhang S Biosens Bioelectron; 2010 Jan; 25(5):1082-7. PubMed ID: 19853436 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. Liu G; Lin Y J Am Chem Soc; 2007 Aug; 129(34):10394-401. PubMed ID: 17676734 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Ozsoz M; Erdem A; Kerman K; Ozkan D; Tugrul B; Topcuoglu N; Ekren H; Taylan M Anal Chem; 2003 May; 75(9):2181-7. PubMed ID: 12720360 [TBL] [Abstract][Full Text] [Related]
5. Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detection. Lee TM; Cai H; Hsing IM Analyst; 2005 Mar; 130(3):364-9. PubMed ID: 15724166 [TBL] [Abstract][Full Text] [Related]
6. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. He Y; Zeng K; Gurung AS; Baloda M; Xu H; Zhang X; Liu G Anal Chem; 2010 Sep; 82(17):7169-77. PubMed ID: 20681563 [TBL] [Abstract][Full Text] [Related]
7. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases. Chen YT; Hsu CL; Hou SY Anal Biochem; 2008 Apr; 375(2):299-305. PubMed ID: 18211817 [TBL] [Abstract][Full Text] [Related]
8. Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Lu W; Jin Y; Wang G; Chen D; Li J Biosens Bioelectron; 2008 May; 23(10):1534-9. PubMed ID: 18294836 [TBL] [Abstract][Full Text] [Related]
9. Gold nanoparticle-based electrochemical detection of protein phosphorylation. Kerman K; Chikae M; Yamamura S; Tamiya E Anal Chim Acta; 2007 Apr; 588(1):26-33. PubMed ID: 17386790 [TBL] [Abstract][Full Text] [Related]
10. Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels. Rochelet-Dequaire M; Limoges B; Brossier P Analyst; 2006 Aug; 131(8):923-9. PubMed ID: 17028726 [TBL] [Abstract][Full Text] [Related]
11. Dendrimers-based DNA biosensors for highly sensitive electrochemical detection of DNA hybridization using reporter probe DNA modified with Au nanoparticles. Li G; Li X; Wan J; Zhang S Biosens Bioelectron; 2009 Jul; 24(11):3281-7. PubMed ID: 19450970 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au(nano)-CNT/PAN(nano) films. Zhou N; Yang T; Jiang C; Du M; Jiao K Talanta; 2009 Jan; 77(3):1021-6. PubMed ID: 19064085 [TBL] [Abstract][Full Text] [Related]
13. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses. Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000 [TBL] [Abstract][Full Text] [Related]
14. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin-encapsulated nanoparticles. Abbaspour A; Noori A Biosens Bioelectron; 2012; 37(1):11-8. PubMed ID: 22626827 [TBL] [Abstract][Full Text] [Related]
16. Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Sato K; Hosokawa K; Maeda M Nucleic Acids Res; 2005 Jan; 33(1):e4. PubMed ID: 15640441 [TBL] [Abstract][Full Text] [Related]
17. Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity. García T; Casero E; Revenga-Parra M; Martín-Benito J; Pariente F; Vázquez L; Lorenzo E Biosens Bioelectron; 2008 Oct; 24(2):184-90. PubMed ID: 18485689 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Shen L; Chen Z; Li Y; He S; Xie S; Xu X; Liang Z; Meng X; Li Q; Zhu Z; Li M; Le XC; Shao Y Anal Chem; 2008 Aug; 80(16):6323-8. PubMed ID: 18627134 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296 [TBL] [Abstract][Full Text] [Related]
20. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Luo XL; Xu JJ; Zhang Q; Yang GJ; Chen HY Biosens Bioelectron; 2005 Jul; 21(1):190-6. PubMed ID: 15967368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]