These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15054031)

  • 81. Random weighted bootstrap method for recurrent events with informative censoring.
    Chiang CT; James LF; Wang MC
    Lifetime Data Anal; 2005 Dec; 11(4):489-509. PubMed ID: 16328573
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Mixture regression models for the gap time distributions and illness-death processes.
    Huang CH
    Lifetime Data Anal; 2019 Jan; 25(1):168-188. PubMed ID: 29374789
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Doubly robust estimation of the generalized impact fraction.
    Taguri M; Matsuyama Y; Ohashi Y; Harada A; Ueshima H
    Biostatistics; 2012 Jul; 13(3):455-67. PubMed ID: 22084301
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Conditional GEE for recurrent event gap times.
    Clement DY; Strawderman RL
    Biostatistics; 2009 Jul; 10(3):451-67. PubMed ID: 19297655
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Induced smoothing for rank-based regression with recurrent gap time data.
    Lyu T; Luo X; Xu G; Huang CY
    Stat Med; 2018 Mar; 37(7):1086-1100. PubMed ID: 29205446
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Fitting semiparametric regressions for panel count survival data with an R package spef.
    Wang X; Yan J
    Comput Methods Programs Biomed; 2011 Nov; 104(2):278-85. PubMed ID: 21208681
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nonparametric estimation of sojourn time distributions for truncated serial event data--a weight-adjusted approach.
    Chang SH; Tzeng SJ
    Lifetime Data Anal; 2006 Mar; 12(1):53-67. PubMed ID: 16583299
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Robust estimation for panel count data with informative observation times and censoring times.
    Jiang H; Su W; Zhao X
    Lifetime Data Anal; 2020 Jan; 26(1):65-84. PubMed ID: 30542803
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A hot-deck multiple imputation procedure for gaps in longitudinal data on recurrent events.
    Little RJ; Yosef M; Cain KC; Nan B; Harlow SD
    Stat Med; 2008 Jan; 27(1):103-20. PubMed ID: 17592832
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Group sequential designs with robust semiparametric recurrent event models.
    Mütze T; Glimm E; Schmidli H; Friede T
    Stat Methods Med Res; 2019 Aug; 28(8):2385-2403. PubMed ID: 29890892
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Semiparametric regression analysis for alternating recurrent event data.
    Lee CH; Huang CY; Xu G; Luo X
    Stat Med; 2018 Mar; 37(6):996-1008. PubMed ID: 29171035
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Semiparametric analysis of recurrent events: artificial censoring, truncation, pairwise estimation and inference.
    Ghosh D
    Lifetime Data Anal; 2010 Oct; 16(4):509-24. PubMed ID: 20063182
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Semiparametric modeling and analysis of longitudinal method comparison data.
    Rathnayake LN; Choudhary PK
    Stat Med; 2017 Jun; 36(13):2003-2015. PubMed ID: 28215054
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Joint modeling of recurrent events and survival: a Bayesian non-parametric approach.
    Paulon G; De Iorio M; Guglielmi A; Ieva F
    Biostatistics; 2020 Jan; 21(1):1-14. PubMed ID: 29985982
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Additive mixed effect model for recurrent gap time data.
    Ding J; Sun L
    Lifetime Data Anal; 2017 Apr; 23(2):223-253. PubMed ID: 26296808
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Semiparametric analysis of panel count data with correlated observation and follow-up times.
    He X; Tong X; Sun J
    Lifetime Data Anal; 2009 Jun; 15(2):177-96. PubMed ID: 19082711
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Cox regression analysis of multivariate failure time data: the marginal approach.
    Lin DY
    Stat Med; 1994 Nov; 13(21):2233-47. PubMed ID: 7846422
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The semiparametric accelerated trend-renewal process for recurrent event data.
    Su CL; Steele RJ; Shrier I
    Lifetime Data Anal; 2021 Jul; 27(3):357-387. PubMed ID: 33768490
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Joint modeling of longitudinal, recurrent events and failure time data for survivor's population.
    Cai Q; Wang MC; Chan KCG
    Biometrics; 2017 Dec; 73(4):1150-1160. PubMed ID: 28334426
    [TBL] [Abstract][Full Text] [Related]  

  • 100. BivRec: an R package for the nonparametric and semiparametric analysis of bivariate alternating recurrent events.
    Castro-Pearson S; Sur A; Lee CH; Huang CY; Luo X
    BMC Med Res Methodol; 2022 Apr; 22(1):92. PubMed ID: 35369863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.