BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 15054111)

  • 1. Identification and functional characterization of Arabidopsis AP180, a binding partner of plant alphaC-adaptin.
    Barth M; Holstein SE
    J Cell Sci; 2004 Apr; 117(Pt 10):2051-62. PubMed ID: 15054111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for the clathrin assembly domain of AP180 in synaptic vesicle endocytosis.
    Morgan JR; Zhao X; Womack M; Prasad K; Augustine GJ; Lafer EM
    J Neurosci; 1999 Dec; 19(23):10201-12. PubMed ID: 10575017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Synuclein colocalizes with AP180 and affects the size of clathrin lattices.
    Vargas KJ; Colosi PL; Girardi E; Park JM; Harmon LE; Chandra SS
    J Biol Chem; 2023 Sep; 299(9):105091. PubMed ID: 37516240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation by Dyrk1A of clathrin coated vesicle-associated proteins: identification of the substrate proteins and the effects of phosphorylation.
    Murakami N; Bolton DC; Kida E; Xie W; Hwang YW
    PLoS One; 2012; 7(4):e34845. PubMed ID: 22514676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulators of yeast endocytosis identified by systematic quantitative analysis.
    Burston HE; Maldonado-Báez L; Davey M; Montpetit B; Schluter C; Wendland B; Conibear E
    J Cell Biol; 2009 Jun; 185(6):1097-110. PubMed ID: 19506040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protein architecture of the endocytic coat analyzed by FRET microscopy.
    Skruzny M; Pohl E; Gnoth S; Malengo G; Sourjik V
    Mol Syst Biol; 2020 May; 16(5):e9009. PubMed ID: 32400111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis.
    Johnson A; Dahhan DA; Gnyliukh N; Kaufmann WA; Zheden V; Costanzo T; Mahou P; Hrtyan M; Wang J; Aguilera-Servin J; van Damme D; Beaurepaire E; Loose M; Bednarek SY; Friml J
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34907016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.
    Jin AJ; Lafer EM; Peng JQ; Smith PD; Nossal R
    Methods; 2013 Mar; 59(3):316-27. PubMed ID: 23270814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis PHOSPHATE 1 exporter undergoes constitutive internalization via clathrin-mediated endocytosis.
    Vetal PV; Poirier Y
    Plant J; 2023 Dec; 116(5):1477-1491. PubMed ID: 37638714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular architecture of the endocytic TPLATE complex.
    Yperman K; Wang J; Eeckhout D; Winkler J; Vu LD; Vandorpe M; Grones P; Mylle E; Kraus M; Merceron R; Nolf J; Mor E; De Bruyn P; Loris R; Potocký M; Savvides SN; De Rybel B; De Jaeger G; Van Damme D; Pleskot R
    Sci Adv; 2021 Feb; 7(9):. PubMed ID: 33637534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of endomembrane trafficking in plants.
    Aniento F; Sánchez de Medina Hernández V; Dagdas Y; Rojas-Pierce M; Russinova E
    Plant Cell; 2022 Jan; 34(1):146-173. PubMed ID: 34550393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat Stress-Dependent Association of Membrane Trafficking Proteins With mRNPs Is Selective.
    Wolff H; Jakoby M; Stephan L; Koebke E; Hülskamp M
    Front Plant Sci; 2021; 12():670499. PubMed ID: 34249042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Identification of
    Lee SK; Hong WJ; Silva J; Kim EJ; Park SK; Jung KH; Kim YJ
    Front Plant Sci; 2021; 12():609473. PubMed ID: 33927731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attracted to membranes: lipid-binding domains in plants.
    de Jong F; Munnik T
    Plant Physiol; 2021 Apr; 185(3):707-723. PubMed ID: 33793907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins.
    Schwihla M; Korbei B
    Front Plant Sci; 2020; 11():680. PubMed ID: 32528512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Structural Organization of Bulk Apical Membrane Traffic in Pollen Tubes.
    Grebnev G; Cvitkovic M; Fritz C; Cai G; Smith AS; Kost B
    Plant Physiol; 2020 Aug; 183(4):1559-1585. PubMed ID: 32482906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes.
    Li H; Luo N; Wang W; Liu Z; Chen J; Zhao L; Tan L; Wang C; Qin Y; Li C; Xu T; Yang Z
    Nat Commun; 2018 Jul; 9(1):2573. PubMed ID: 29968705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology.
    Klinger CM; Ramirez-Macias I; Herman EK; Turkewitz AP; Field MC; Dacks JB
    Mol Biochem Parasitol; 2016; 209(1-2):88-103. PubMed ID: 27444378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier.
    Sancho-Andrés G; Soriano-Ortega E; Gao C; Bernabé-Orts JM; Narasimhan M; Müller AO; Tejos R; Jiang L; Friml J; Aniento F; Marcote MJ
    Plant Physiol; 2016 Jul; 171(3):1965-82. PubMed ID: 27208248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion.
    Zouhar J; Sauer M
    Plant Cell; 2014 Nov; 26(11):4232-44. PubMed ID: 25415979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.