BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15054224)

  • 1. Calcium signaling in isolated skeletal muscle fibers investigated under "Silicone Voltage-Clamp" conditions.
    Collet C; Pouvreau S; Csernoch L; Allard B; Jacquemond V
    Cell Biochem Biophys; 2004; 40(2):225-36. PubMed ID: 15054224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.
    Pouvreau S; Csernoch L; Allard B; Sabatier JM; De Waard M; Ronjat M; Jacquemond V
    Biophys J; 2006 Sep; 91(6):2206-15. PubMed ID: 16782801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle.
    Gouadon E; Schuhmeier RP; Ursu D; Anderson AA; Treves S; Zorzato F; Lehmann-Horn F; Melzer W
    J Physiol; 2006 Apr; 572(Pt 1):269-80. PubMed ID: 16423849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysfunction of store-operated calcium channel in muscle cells lacking mg29.
    Pan Z; Yang D; Nagaraj RY; Nosek TA; Nishi M; Takeshima H; Cheng H; Ma J
    Nat Cell Biol; 2002 May; 4(5):379-83. PubMed ID: 11988740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle.
    Friedrich O; Hund E; Weber C; Hacke W; Fink RH
    J Neurol; 2004 Jan; 251(1):53-65. PubMed ID: 14999490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indo-1 fluorescence signals elicited by membrane depolarization in enzymatically isolated mouse skeletal muscle fibers.
    Jacquemond V
    Biophys J; 1997 Aug; 73(2):920-8. PubMed ID: 9251808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapamycin and FK506 reduce skeletal muscle voltage sensor expression and function.
    Avila G; Dirksen RT
    Cell Calcium; 2005 Jul; 38(1):35-44. PubMed ID: 15955561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle.
    Sirvent P; Mercier J; Vassort G; Lacampagne A
    Biochem Biophys Res Commun; 2005 Apr; 329(3):1067-75. PubMed ID: 15752763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-induced calcium release in skeletal muscle.
    Endo M
    Physiol Rev; 2009 Oct; 89(4):1153-76. PubMed ID: 19789379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle.
    Wang X; Weisleder N; Collet C; Zhou J; Chu Y; Hirata Y; Zhao X; Pan Z; Brotto M; Cheng H; Ma J
    Nat Cell Biol; 2005 May; 7(5):525-30. PubMed ID: 15834406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two mechanisms of quantized calcium release in skeletal muscle.
    Klein MG; Cheng H; Santana LF; Jiang YH; Lederer WJ; Schneider MF
    Nature; 1996 Feb; 379(6564):455-8. PubMed ID: 8559251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-cell voltage clamp on skeletal muscle fibers with the silicone-clamp technique.
    Pouvreau S; Collet C; Allard B; Jacquemond V
    Methods Mol Biol; 2007; 403():185-94. PubMed ID: 18827995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes.
    Kettlewell S; Most P; Currie S; Koch WJ; Smith GL
    J Mol Cell Cardiol; 2005 Dec; 39(6):900-10. PubMed ID: 16236309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes.
    Liberona JL; Cárdenas JC; Reyes R; Hidalgo J; Molgó J; Jaimovich E
    Cell Calcium; 2008 Sep; 44(3):289-97. PubMed ID: 18276006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes.
    Schuhmeier RP; Gouadon E; Ursu D; Kasielke N; Flucher BE; Grabner M; Melzer W
    Biophys J; 2005 Mar; 88(3):1765-77. PubMed ID: 15626717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres.
    Woods CE; Novo D; DiFranco M; Capote J; Vergara JL
    J Physiol; 2005 Nov; 568(Pt 3):867-80. PubMed ID: 16123111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres.
    Szentesi P; Jacquemond V; Kovács L; Csernoch L
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):371-84. PubMed ID: 9423180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.