These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15054255)

  • 1. Modeling of carbonic acid pretreatment process using ASPEN-Plus.
    Jayawardhana K; Van Walsum GP
    Appl Biochem Biotechnol; 2004; 113-116():1087-102. PubMed ID: 15054255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techno-economic evaluation of a two-step biological process for hydrogen production.
    Ljunggren M; Zacchi G
    Biotechnol Prog; 2010; 26(2):496-504. PubMed ID: 20039381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of microbial inhibition and enzymatic hydrolysis rates of liquid and solid fractions produced from pretreatment of biomass with carbonic acid and liquid hot water.
    Yourchisin DM; Van Walsum GP
    Appl Biochem Biotechnol; 2004; 113-116():1073-86. PubMed ID: 15054254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass.
    Nagle N; Ibsen K; Jennings E
    Appl Biochem Biotechnol; 1999; 77-79():595-607. PubMed ID: 15304681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover.
    van Walsum GP; Shi H
    Bioresour Technol; 2004 Jul; 93(3):217-26. PubMed ID: 15062815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of aspen wood hydrolysates produced by pretreatment with liquid hot water and carbonic acid.
    McWilliams RC; van Walsum GP
    Appl Biochem Biotechnol; 2002; 98-100():109-21. PubMed ID: 12018232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production.
    da Silva AR; Torres Ortega CE; Rong BG
    Bioresour Technol; 2016 Oct; 218():561-70. PubMed ID: 27403858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production.
    Bals B; Wedding C; Balan V; Sendich E; Dale B
    Bioresour Technol; 2011 Jan; 102(2):1277-83. PubMed ID: 20826086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics simulation and redesign of a screw conveyor reactor.
    Wan Y; Hanley TR
    Appl Biochem Biotechnol; 2004; 113-116():733-45. PubMed ID: 15054289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.
    Darkwah K; Nokes SE; Seay JR; Knutson BL
    Bioprocess Biosyst Eng; 2018 Sep; 41(9):1283-1294. PubMed ID: 29789929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation.
    Jürgensen L; Ehimen EA; Born J; Holm-Nielsen JB
    Bioresour Technol; 2015 Feb; 178():323-329. PubMed ID: 25453430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production.
    Nagle NJ; Elander RT; Newman MM; Rohrback BT; Ruiz RO; Torget RW
    Biotechnol Prog; 2002; 18(4):734-8. PubMed ID: 12153306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process design and simulation of H2-rich gases production from biomass pyrolysis process.
    Li C; Suzuki K
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S86-90. PubMed ID: 19523817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose.
    Morales-Rodriguez R; Meyer AS; Gernaey KV; Sin G
    Bioresour Technol; 2011 Jan; 102(2):1174-84. PubMed ID: 20961753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow field in a shrinking-bed reactor for pretreatment of cellulosic biomass.
    Wan Y; Hanley TR
    Appl Biochem Biotechnol; 2003; 105 -108():593-602. PubMed ID: 12721438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS.
    Lan W; Chen G; Zhu X; Wang X; Liu C; Xu B
    Sci Total Environ; 2018 Jul; 628-629():1278-1286. PubMed ID: 30045549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach.
    Quintero JA; Moncada J; Cardona CA
    Bioresour Technol; 2013 Jul; 139():300-7. PubMed ID: 23665691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment solution recycling and high-concentration output for economical production of bioethanol.
    Han M; Moon SK; Choi GW
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2205-13. PubMed ID: 24794172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing profitability of dry mill ethanol plants: process modeling and economics of conversion of degermed defibered corn to ethanol.
    Rajagopalan S; Ponnampalam E; McCalla D; Stowers M
    Appl Biochem Biotechnol; 2005 Jan; 120(1):37-50. PubMed ID: 15640556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.