BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15054257)

  • 1. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates.
    Xiao Z; Zhang X; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2004; 113-116():1115-26. PubMed ID: 15054257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis.
    Knutsen JS; Davis RH
    Appl Biochem Biotechnol; 2004; 113-116():585-99. PubMed ID: 15054279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.
    Machado DL; Moreira Neto J; da Cruz Pradella JG; Bonomi A; Rabelo SC; da Costa AC
    Biotechnol Appl Biochem; 2015; 62(5):681-9. PubMed ID: 25322902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis.
    Nakata T; Miyafuji H; Saka S
    Appl Biochem Biotechnol; 2006; 129-132():476-85. PubMed ID: 16915663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis.
    Tu M; Zhang X; Kurabi A; Gilkes N; Mabee W; Saddler J
    Biotechnol Lett; 2006 Feb; 28(3):151-6. PubMed ID: 16489491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce. Hydrolytic potential of cellulases on different substrates.
    Szengyel Z; Zacchi G; Varga A; Réczey K
    Appl Biochem Biotechnol; 2000; 84-86():679-91. PubMed ID: 10849827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues.
    Lu Y; Yang B; Gregg D; Saddler JN; Mansfield SD
    Appl Biochem Biotechnol; 2002; 98-100():641-54. PubMed ID: 12018289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.
    Tsuji A; Tominaga K; Nishiyama N; Yuasa K
    PLoS One; 2013; 8(6):e65418. PubMed ID: 23762366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations.
    Berlin A; Balakshin M; Gilkes N; Kadla J; Maximenko V; Kubo S; Saddler J
    J Biotechnol; 2006 Sep; 125(2):198-209. PubMed ID: 16621087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate reactions during high-temperature steam treatment of aspen wood.
    Li J; Henriksson G; Gellerstedt G
    Appl Biochem Biotechnol; 2005 Jun; 125(3):175-88. PubMed ID: 15917581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic saccharification of cassava residues and glucose inhibitory kinetics on β-glucosidase from Hypocrea orientalis.
    Xu XQ; Wu XB; Cui Y; Cai YX; Liu RW; Long MN; Chen QX
    J Agric Food Chem; 2014 Nov; 62(47):11512-8. PubMed ID: 25393891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic hydrolysis of cellulosic materials by Sclerotium rolfsii culture filtrate for sugar production.
    Shewale JG; Sadana JC
    Can J Microbiol; 1979 Jun; 25(6):773-83. PubMed ID: 38898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of product inhibition as a yield-determining factor in enzymatic high-solid hydrolysis of pretreated corn stover.
    Olsen SN; Borch K; Cruys-Bagger N; Westh P
    Appl Biochem Biotechnol; 2014 Sep; 174(1):146-55. PubMed ID: 25028248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood.
    Palonen H; Thomsen AB; Tenkanen M; Schmidt AS; Viikari L
    Appl Biochem Biotechnol; 2004 Apr; 117(1):1-17. PubMed ID: 15126700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2004 Apr; 86(1):88-95. PubMed ID: 15007845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the mechanism of enzymatic hydrolysis of cellulosic substances.
    Ghose TK; Bisaria VS
    Biotechnol Bioeng; 1979 Jan; 21(1):131-46. PubMed ID: 106903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel biochemical route for fuels and chemicals production from cellulosic biomass.
    Fan Z; Wu W; Hildebrand A; Kasuga T; Zhang R; Xiong X
    PLoS One; 2012; 7(2):e31693. PubMed ID: 22384058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.