BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15054257)

  • 21. Studies on the mechanism of enzymatic hydrolysis of cellulosic substances.
    Ghose TK; Bisaria VS
    Biotechnol Bioeng; 1979 Jan; 21(1):131-46. PubMed ID: 106903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel biochemical route for fuels and chemicals production from cellulosic biomass.
    Fan Z; Wu W; Hildebrand A; Kasuga T; Zhang R; Xiong X
    PLoS One; 2012; 7(2):e31693. PubMed ID: 22384058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of cellulase preparations for hydrolysis of hardwood substrates.
    Berlin A; Gilkes N; Kilburn D; Maximenko V; Bura R; Markov A; Skomarovsky A; Gusakov A; Sinitsyn A; Okunev O; Solovieva I; Saddler JN
    Appl Biochem Biotechnol; 2006; 129-132():528-45. PubMed ID: 16915667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content.
    Pan X; Xie D; Gilkes N; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2005; 121-124():1069-79. PubMed ID: 15930582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Feb; 102(2):457-67. PubMed ID: 18781688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermostability.
    Lee HL; Chang CK; Teng KH; Liang PH
    Bioresour Technol; 2011 Feb; 102(4):3973-6. PubMed ID: 21169014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Customized optimization of cellulase mixtures for differently pretreated rice straw.
    Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH
    Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of oxygen delignification operating parameters on downstream enzymatic hydrolysis of softwood substrates.
    Charles N; Mansfield SD; Mirochnik O; Duff SJ
    Biotechnol Prog; 2003; 19(5):1606-11. PubMed ID: 14524725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete saccharification of cellulose at high temperature using endocellulase and beta-glucosidase from Pyrococcus sp.
    Kim HW; Ishikawa K
    J Microbiol Biotechnol; 2010 May; 20(5):889-92. PubMed ID: 20519912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose.
    Gusakov AV; Salanovich TN; Antonov AI; Ustinov BB; Okunev ON; Burlingame R; Emalfarb M; Baez M; Sinitsyn AP
    Biotechnol Bioeng; 2007 Aug; 97(5):1028-38. PubMed ID: 17221887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods.
    Wang GS; Pan XJ; Zhu JY; Gleisner R; Rockwood D
    Biotechnol Prog; 2009; 25(4):1086-93. PubMed ID: 19551888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations.
    Prior BA; Day DF
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):151-64. PubMed ID: 18421595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(2):302-14. PubMed ID: 19301243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes.
    Zhang M; Su R; Qi W; He Z
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1407-14. PubMed ID: 19288067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion.
    Yang B; Willies DM; Wyman CE
    Biotechnol Bioeng; 2006 Aug; 94(6):1122-8. PubMed ID: 16732604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.
    Geddes CC; Peterson JJ; Roslander C; Zacchi G; Mullinnix MT; Shanmugam KT; Ingram LO
    Bioresour Technol; 2010 Mar; 101(6):1851-7. PubMed ID: 19880314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood.
    Lim WS; Lee JW
    Bioresour Technol; 2013 Jul; 140():306-11. PubMed ID: 23708848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alkaline polyol pulping and enzymatic hydrolysis of softwood: effect of pulping severity and pulp properties on cellulase activity and overall sugar yield.
    Hundt M; Schnitzlein K; Schnitzlein MG
    Bioresour Technol; 2013 Apr; 134():307-15. PubMed ID: 23500589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum.
    Tewalt J; Schilling J
    Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis.
    Zhang H; Xu Y; Yu S
    Bioresour Technol; 2017 Jun; 234():343-349. PubMed ID: 28340439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.