BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 15054266)

  • 1. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes.
    Krogh KB; Mørkeberg A; Jørgensen H; Frisvad JC; Olsson L
    Appl Biochem Biotechnol; 2004; 113-116():389-401. PubMed ID: 15054266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The xylanolytic enzyme system from the genus Penicillium.
    Chávez R; Bull P; Eyzaguirre J
    J Biotechnol; 2006 Jun; 123(4):413-33. PubMed ID: 16569456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role of xylanase, alpha-L-arabinofuranosidase, and xylosidase in xylan degradation.
    Rahman AK; Sugitani N; Hatsu M; Takamizawa K
    Can J Microbiol; 2003 Jan; 49(1):58-64. PubMed ID: 12674349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis.
    Tarayre C; Bauwens J; Brasseur C; Mattéotti C; Millet C; Guiot PA; Destain J; Vandenbol M; Portetelle D; De Pauw E; Haubruge E; Francis F; Thonart P
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4369-82. PubMed ID: 25300185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promising cellulolytic fungi isolates for rice straw degradation.
    Pedraza-Zapata DC; Sánchez-Garibello AM; Quevedo-Hidalgo B; Moreno-Sarmiento N; Gutiérrez-Rojas I
    J Microbiol; 2017 Sep; 55(9):711-719. PubMed ID: 28865071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection and molecular identification of fungal isolates that produce xylanolytic enzymes.
    Alvarez-Navarrete M; Reyna López GE; Flores-García A; López Gómez R; Martínez-Pacheco MM
    Genet Mol Res; 2015 Jul; 14(3):8100-16. PubMed ID: 26214493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of extracellular xylanases by Penicillium janthinellum. Effect of selected growth conditions.
    Curotto E; Concha M; Campos V; Milagres AM; Duran N
    Appl Biochem Biotechnol; 1994 Aug; 48(2):107-16. PubMed ID: 7944349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and heterologous expression of an acid-stable endoxylanase gene from Penicillium oxalicum in Trichoderma reesei.
    Wang J; Mai G; Liu G; Yu S
    J Microbiol Biotechnol; 2013 Feb; 23(2):251-9. PubMed ID: 23412069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production.
    Garcia-Kirchner O; Muñoz-Aguilar M; Pérez-Villalva R; Huitrón-Vargas C
    Appl Biochem Biotechnol; 2002; 98-100():1105-14. PubMed ID: 12018234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the mechanism of enzymatic hydrolysis of xylan.
    Moreira LR; Filho EX
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5205-14. PubMed ID: 27112349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates.
    Teunissen MJ; de Kort GV; Op den Camp HJ; Vogels GD
    Appl Biochem Biotechnol; 1993; 39-40():177-89. PubMed ID: 8323259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities.
    Teunissen MJ; Kets EP; Op den Camp HJ; Huis in't Veld JH; Vogels GD
    Arch Microbiol; 1992; 157(2):176-82. PubMed ID: 1550443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources.
    Sipos B; Benko Z; Dienes D; Réczey K; Viikari L; Siika-aho M
    Appl Biochem Biotechnol; 2010 May; 161(1-8):347-64. PubMed ID: 19898963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylanolytic enzymes from fungi and bacteria.
    Sunna A; Antranikian G
    Crit Rev Biotechnol; 1997; 17(1):39-67. PubMed ID: 9118232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and Identification of Trichoderma Strains Isolated from Natural Habitats with Potential to Cellulose and Xylan Degrading Enzymes Production.
    Marecik R; Błaszczyk L; Biegańska-Marecik R; Piotrowska-Cyplik A
    Pol J Microbiol; 2018 Jun; 67(2):181-190. PubMed ID: 30015456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.