These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15054280)

  • 1. Controlled fed-batch fermentations of dilute-acid hydrolysate in pilot development unit scale.
    Rudolf A; Galbe M; Lidén G
    Appl Biochem Biotechnol; 2004; 113-116():601-17. PubMed ID: 15054280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled pilot development unit-scale fed-batch cultivation of yeast on spruce hydrolysates.
    Rudolf A; Lequeux G; Lidén G
    Biotechnol Prog; 2007; 23(2):351-8. PubMed ID: 17330957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line control of fed-batch fermentation of dilute-acid hydrolyzates.
    Taherzadeh MJ; Niklasson C; Lidén G
    Biotechnol Bioeng; 2000 Aug; 69(3):330-8. PubMed ID: 10861413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.
    Brethauer S; Wyman CE
    Bioresour Technol; 2010 Jul; 101(13):4862-74. PubMed ID: 20006926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate.
    Almeida JR; Karhumaa K; Bengtsson O; Gorwa-Grauslund MF
    Bioresour Technol; 2009 Jul; 100(14):3674-7. PubMed ID: 19329297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose.
    Nilsson A; Gorwa-Grauslund MF; Hahn-Hägerdal B; Lidén G
    Appl Environ Microbiol; 2005 Dec; 71(12):7866-71. PubMed ID: 16332761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment.
    Zhang M; Wang F; Su R; Qi W; He Z
    Bioresour Technol; 2010 Jul; 101(13):4959-64. PubMed ID: 20004092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol.
    Nilsson A; Taherzadeh MJ; Lidén G
    J Biotechnol; 2001 Jul; 89(1):41-53. PubMed ID: 11472798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production.
    Nagle NJ; Elander RT; Newman MM; Rohrback BT; Ruiz RO; Torget RW
    Biotechnol Prog; 2002; 18(4):734-8. PubMed ID: 12153306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.
    Ko J; Su WJ; Chien IL; Chang DM; Chou SH; Zhan RY
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):195-205. PubMed ID: 19308458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation.
    Kim TH; Choi CH; Oh KK
    Bioresour Technol; 2013 Feb; 130():306-13. PubMed ID: 23306134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate.
    Lawford HG; Rousseau JD; Tolan JS
    Appl Biochem Biotechnol; 2001; 91-93():133-46. PubMed ID: 11963842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate.
    Petersson A; Lidén G
    Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.