These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15054540)
1. Foliar concentrations of volunteer willows growing on polluted sediment-derived sites versus sites with baseline contamination levels. Vandecasteele B; Quataert P; De Vos B; Tack FM; Muys B J Environ Monit; 2004 Apr; 6(4):313-21. PubMed ID: 15054540 [TBL] [Abstract][Full Text] [Related]
2. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments. Vandecasteele B; Laing GD; Quataert P; Tack FM Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256 [TBL] [Abstract][Full Text] [Related]
3. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Vandecasteele B; Quataert P; Tack FM Environ Pollut; 2005 May; 135(2):303-12. PubMed ID: 15734590 [TBL] [Abstract][Full Text] [Related]
4. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
5. Uptake of Cd, Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments. Vandecasteele B; Quataert P; Tack FM Sci Total Environ; 2007 Jul; 380(1-3):133-43. PubMed ID: 17207520 [TBL] [Abstract][Full Text] [Related]
6. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607 [TBL] [Abstract][Full Text] [Related]
7. Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Vandecasteele B; De Vos B; Tack FM Sci Total Environ; 2002 Nov; 299(1-3):191-205. PubMed ID: 12462585 [TBL] [Abstract][Full Text] [Related]
8. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
9. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils. Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195 [TBL] [Abstract][Full Text] [Related]
10. Effect of submergence-emergence sequence and organic matter or aluminosilicate amendment on metal uptake by woody wetland plant species from contaminated sediments. Vandecasteele B; Du Laing G; Tack FM Environ Pollut; 2007 Jan; 145(1):329-38. PubMed ID: 16678320 [TBL] [Abstract][Full Text] [Related]
11. Cycling and ecosystem impact of metals in contaminated calcareous dredged sediment-derived soils (Flanders, Belgium). Tack FM; Vandecasteele B Sci Total Environ; 2008 Aug; 400(1-3):283-9. PubMed ID: 18644617 [TBL] [Abstract][Full Text] [Related]
12. Metal concentrations in sediments and clams in four Moroccan estuaries. Cheggour M; Chafik A; Fisher NS; Benbrahim S Mar Environ Res; 2005 Mar; 59(2):119-37. PubMed ID: 15364512 [TBL] [Abstract][Full Text] [Related]
13. Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Mertens J; Vervaeke P; De Schrijver A; Luyssaert S Sci Total Environ; 2004 Jun; 326(1-3):209-15. PubMed ID: 15142776 [TBL] [Abstract][Full Text] [Related]
14. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Vicente-Martorell JJ; Galindo-Riaño MD; García-Vargas M; Granado-Castro MD J Hazard Mater; 2009 Mar; 162(2-3):823-36. PubMed ID: 18620807 [TBL] [Abstract][Full Text] [Related]
15. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203 [TBL] [Abstract][Full Text] [Related]
16. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
17. Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay. Lu XQ; Werner I; Young TM Environ Int; 2005 May; 31(4):593-602. PubMed ID: 15788199 [TBL] [Abstract][Full Text] [Related]
18. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
19. Trace metal concentrations in sediments and oysters of Botany Bay, NSW, Australia. Spooner DR; Maher W; Otway N Arch Environ Contam Toxicol; 2003 Jul; 45(1):92-101. PubMed ID: 12948178 [TBL] [Abstract][Full Text] [Related]
20. Metal concentrations in zebra mussels and sediments from embayments and riverine environments of eastern Lake Erie, southern Lake Ontario, and the Niagara River. Lowe TP; Day DD Arch Environ Contam Toxicol; 2002 Oct; 43(3):301-8. PubMed ID: 12202926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]