These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 15054639)
1. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Hellmich C; Ulm FJ; Dormieux L Biomech Model Mechanobiol; 2004 Jun; 2(4):219-38. PubMed ID: 15054639 [TBL] [Abstract][Full Text] [Related]
2. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. Fritsch A; Hellmich C J Theor Biol; 2007 Feb; 244(4):597-620. PubMed ID: 17074362 [TBL] [Abstract][Full Text] [Related]
3. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. Fritsch A; Hellmich C; Dormieux L J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330 [TBL] [Abstract][Full Text] [Related]
4. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related]
5. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments. Hellmich Ch; Ulm FJ J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310 [TBL] [Abstract][Full Text] [Related]
6. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10-microm scale. Hellmich C; Ulm FJ Biomech Model Mechanobiol; 2003 Aug; 2(1):21-36. PubMed ID: 14586815 [TBL] [Abstract][Full Text] [Related]
7. A two-parameter model of the effective elastic tensor for cortical bone. Grimal Q; Rus G; Parnell WJ; Laugier P J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920 [TBL] [Abstract][Full Text] [Related]
8. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. Fritsch A; Dormieux L; Hellmich C; Sanahuja J J Biomed Mater Res A; 2009 Jan; 88(1):149-61. PubMed ID: 18286602 [TBL] [Abstract][Full Text] [Related]
10. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969 [TBL] [Abstract][Full Text] [Related]
11. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. Dong XN; Guo XE J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580 [TBL] [Abstract][Full Text] [Related]
12. A model for prediction of bone stiffness using a mechanical approach of composite materials. Perreux DM; Johnson WS J Biomech Eng; 2007 Aug; 129(4):494-502. PubMed ID: 17655470 [TBL] [Abstract][Full Text] [Related]
13. On the mechanical characterization of compact bone structure using the homogenization theory. Aoubiza B; Crolet JM; Meunier A J Biomech; 1996 Dec; 29(12):1539-47. PubMed ID: 8945652 [TBL] [Abstract][Full Text] [Related]
14. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Martínez-Reina J; Domínguez J; García-Aznar JM Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743 [TBL] [Abstract][Full Text] [Related]
15. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433 [TBL] [Abstract][Full Text] [Related]
16. Human cortical bone: the SiNuPrOs model. Predoi-Racila M; Crolet JM Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):169-87. PubMed ID: 18297496 [TBL] [Abstract][Full Text] [Related]
17. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Grimal Q; Raum K; Gerisch A; Laugier P Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625 [TBL] [Abstract][Full Text] [Related]
18. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related]
19. A 3D damage model for trabecular bone based on fabric tensors. Zysset PK; Curnier A J Biomech; 1996 Dec; 29(12):1549-58. PubMed ID: 8945653 [TBL] [Abstract][Full Text] [Related]
20. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. Van Rietbergen B; Odgaard A; Kabel J; Huiskes R J Orthop Res; 1998 Jan; 16(1):23-8. PubMed ID: 9565069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]