These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15054651)

  • 1. Evaluation of a laparoscopic grasper with force feedback.
    Hu T; Tholey G; Desai JP; Castellanos AE
    Surg Endosc; 2004 May; 18(5):863-7. PubMed ID: 15054651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH; Choi J; Park JW; Bach DJ; Song SJ; Kim YH; Jo Y; Sun K
    ASAIO J; 2009; 55(1):83-5. PubMed ID: 19092664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the role of haptic feedback in minimally invasive surgery.
    Bholat OS; Haluck RS; Kutz RH; Gorman PJ; Krummel TM
    Stud Health Technol Inform; 1999; 62():62-6. PubMed ID: 10538400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force feedback plays a significant role in minimally invasive surgery: results and analysis.
    Tholey G; Desai JP; Castellanos AE
    Ann Surg; 2005 Jan; 241(1):102-9. PubMed ID: 15621997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pneumatic haptic feedback actuator array for robotic surgery or simulation.
    King CH; Higa AT; Culjat MO; Han SH; Bisley JW; Carman GP; Dutson E; Grundfest WS
    Stud Health Technol Inform; 2007; 125():217-22. PubMed ID: 17377270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimanual haptic workstation for laparoscopic surgery simulation.
    Devarajan V; Scott D; Jones D; Rege R; Eberhart R; Lindahl C; Tanguy P; Fernandez R
    Stud Health Technol Inform; 2001; 81():126-8. PubMed ID: 11317725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Blue DRAGON--a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment.
    Rosen J; Brown JD; Barreca M; Chang L; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2002; 85():412-8. PubMed ID: 15458124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A haptic simulator to increase laparoscopic force application sensitivity.
    Long LO; Singapogu RB; Arcese G; Smith DE; Burg TC; Pagano CC; Burg KJ
    Stud Health Technol Inform; 2013; 184():273-5. PubMed ID: 23400169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-feedback grasper helps restore sense of touch in minimally invasive surgery.
    MacFarlane M; Rosen J; Hannaford B; Pellegrini C; Sinanan M
    J Gastrointest Surg; 1999; 3(3):278-85. PubMed ID: 10481120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time augmented feedback benefits robotic laparoscopic training.
    Judkins TN; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2006; 119():243-8. PubMed ID: 16404053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying surgeon grasping mechanics in laparoscopy using the Blue DRAGON system.
    Brown JD; Rosen J; Chang L; Sinanan MN; Hannaford B
    Stud Health Technol Inform; 2004; 98():34-6. PubMed ID: 15544237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of laparoscopic grasper force transmission ratio on grasp control.
    Westebring-van der Putten EP; van den Dobbelsteen JJ; Goossens RH; Jakimowicz JJ; Dankelman J
    Surg Endosc; 2009 Apr; 23(4):818-24. PubMed ID: 18814010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surgical techniques: robot-assisted laparoscopic hysterectomy with the da Vinci surgical system.
    Advincula AP
    Int J Med Robot; 2006 Dec; 2(4):305-11. PubMed ID: 17520648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.