These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15055457)

  • 1. Effects of a psychophysiological system for adaptive automation on performance, workload, and the event-related potential P300 component.
    Prinzel LJ; Freeman FG; Scerbo MW; Mikulka PJ; Pope AT
    Hum Factors; 2003 winter; 45(4):601-13. PubMed ID: 15055457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.
    Bailey NR; Scerbo MW; Freeman FG; Mikulka PJ; Scott LA
    Hum Factors; 2006; 48(4):693-709. PubMed ID: 17240718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A closed-loop system for examining psychophysiological measures for adaptive task allocation.
    Prinzel LJ; Freeman FG; Scerbo MW; Mikulka PJ; Pope AT
    Int J Aviat Psychol; 2000 Oct; 10(4):393-410. PubMed ID: 11762443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding.
    Wilson GF; Russell CA
    Hum Factors; 2007 Dec; 49(6):1005-18. PubMed ID: 18074700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of adaptive task allocation on monitoring of automated systems.
    Parasuraman R; Mouloua M; Molloy R
    Hum Factors; 1996 Dec; 38(4):665-79. PubMed ID: 11536753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual differences in response to automation: the five factor model of personality.
    Szalma JL; Taylor GS
    J Exp Psychol Appl; 2011 Jun; 17(2):71-96. PubMed ID: 21688932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of automated decision aids on performance, operator behaviour and workload in a simulated supervisory control task.
    Röttger S; Bali K; Manzey D
    Ergonomics; 2009 May; 52(5):512-23. PubMed ID: 19296323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive automation of human-machine system information-processing functions.
    Kaber DB; Wright MC; Prinzel LJ; Clamann MP
    Hum Factors; 2005; 47(4):730-41. PubMed ID: 16553062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting performance on a target monitoring task employing an automatic tracker.
    McFadden SM; Vimalachandran A; Blackmore E
    Ergonomics; 2004 Feb; 47(3):257-80. PubMed ID: 14668161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Level of automation effects on performance, situation awareness and workload in a dynamic control task.
    Endsley MR; Kaber DB
    Ergonomics; 1999 Mar; 42(3):462-92. PubMed ID: 10048306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance, workload, and fatigue changes associated with automation.
    Harris WC; Hancock PA; Arthur EJ; Caird JK
    Int J Aviat Psychol; 1995; 5(2):169-85. PubMed ID: 11540255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coadaptive aiding and automation enhance operator performance.
    Christensen JC; Estepp JR
    Hum Factors; 2013 Oct; 55(5):965-75. PubMed ID: 24218905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control.
    Miller CA; Parasuraman R
    Hum Factors; 2007 Feb; 49(1):57-75. PubMed ID: 17315844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training and testing ERP-BCIs under different mental workload conditions.
    Ke Y; Wang P; Chen Y; Gu B; Qi H; Zhou P; Ming D
    J Neural Eng; 2016 Feb; 13(1):016007. PubMed ID: 26655346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive demands in automation.
    Tsang PS; Johnson WW
    Aviat Space Environ Med; 1989 Feb; 60(2):130-5. PubMed ID: 2930423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The psychometrics of mental workload: multiple measures are sensitive but divergent.
    Matthews G; Reinerman-Jones LE; Barber DJ; Abich J
    Hum Factors; 2015 Feb; 57(1):125-43. PubMed ID: 25790574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the balance between task automation and human manual control in simulated submarine track management.
    Chen SI; Visser TAW; Huf S; Loft S
    J Exp Psychol Appl; 2017 Sep; 23(3):240-262. PubMed ID: 28604012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an adaptive automation system using three EEG indices with a visual tracking task.
    Freeman FG; Mikulka PJ; Prinzel LJ; Scerbo MW
    Biol Psychol; 1999 May; 50(1):61-76. PubMed ID: 10378439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-automated CCTV surveillance: the effects of system confidence, system accuracy and task complexity on operator vigilance, reliance and workload.
    Dadashi N; Stedmon AW; Pridmore TP
    Appl Ergon; 2013 Sep; 44(5):730-8. PubMed ID: 22704458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.