These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 15055811)

  • 1. Characterizing ultra-thin matching layers of high-frequency ultrasonic transducer based on impedance matching principle.
    Wang H; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):211-5. PubMed ID: 15055811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of 20 MHz wideband piezoelectric transducers for close proximity imaging.
    Thiagarajan S; Jayawardena I; Martin RW
    Biomed Sci Instrum; 1991; 27():57-65. PubMed ID: 2065178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application.
    Fang HJ; Chen Y; Wong CM; Qiu WB; Chan HL; Dai JY; Li Q; Yan QF
    Ultrasonics; 2016 Aug; 70():29-33. PubMed ID: 27125558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2818-27. PubMed ID: 21156377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic impedance matching of piezoelectric transducers to the air.
    Gómez Alvarez-Arenas TE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):624-33. PubMed ID: 15217239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input impedance matching of acoustic transducers operating at off-resonant frequencies.
    Son KT; Lee CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2784-94. PubMed ID: 21156374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal.
    Zhou QF; Cannata J; Kirk Shung K
    Ultrasonics; 2006 Dec; 44 Suppl 1():e607-11. PubMed ID: 16797635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bonding and impedance matching of acoustic transducers using silver epoxy.
    Son KT; Lee CC
    Ultrasonics; 2012 Apr; 52(4):555-63. PubMed ID: 22239830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers.
    Trogé A; O'Leary RL; Hayward G; Pethrick RA; Mullholland AJ
    J Acoust Soc Am; 2010 Nov; 128(5):2704-14. PubMed ID: 21110566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of interdigital transducer sensors for non-destructive characterization of thin films using high frequency Rayleigh waves.
    Deboucq J; Duquennoy M; Ouaftouh M; Jenot F; Carlier J; Ourak M
    Rev Sci Instrum; 2011 Jun; 82(6):064905. PubMed ID: 21721722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable high acoustic impedance alumina epoxy composite matching for high frequency ultrasound transducer.
    Wong CM; Chan SF; Wu WC; Suen CH; Yau HM; Wang DY; Li S; Dai JY
    Ultrasonics; 2021 Sep; 116():106506. PubMed ID: 34274741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.
    Aoyagi T; Nakazawa M; Tabaru M; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1761-8. PubMed ID: 19686992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction aperture non-ideal behaviour of air coupled transducers array elements designed for NDT.
    Prego Borges JL; Montero de Espinosa F; Salazar J; Garcia-Alvarez J; Chávez JA; Turó A; Garcia-Hernandez MJ
    Ultrasonics; 2006 Dec; 44 Suppl 1():e667-72. PubMed ID: 16797644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
    Qian Y; Harris NR
    Ultrasonics; 2014 Feb; 54(2):586-91. PubMed ID: 24025461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films.
    Bloomfield PE; Lo WJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1397-405. PubMed ID: 18238685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.