These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15056450)

  • 1. Degenerative and regenerative mechanisms governing spinal cord injury.
    Profyris C; Cheema SS; Zang D; Azari MF; Boyle K; Petratos S
    Neurobiol Dis; 2004 Apr; 15(3):415-36. PubMed ID: 15056450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats.
    Pannu R; Barbosa E; Singh AK; Singh I
    J Neurosci Res; 2005 Feb; 79(3):340-50. PubMed ID: 15605375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.
    Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP
    Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.
    Terayama R; Bando Y; Murakami K; Kato K; Kishibe M; Yoshida S
    Neuroscience; 2007 Aug; 148(1):175-87. PubMed ID: 17629414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Oligodendrocyte and spinal cord injury].
    Xu H; Wang J; Zhai Y; Huang B; Zhou X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1226-9. PubMed ID: 23469562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights of the injured lesions of rat spinal cords: Inflammation, apoptosis, and cell survival.
    Ahn YH; Lee G; Kang SK
    Biochem Biophys Res Commun; 2006 Sep; 348(2):560-70. PubMed ID: 16890196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic alterations in the cellular composition of spinal cord white matter following contusion injury.
    Rosenberg LJ; Zai LJ; Wrathall JR
    Glia; 2005 Jan; 49(1):107-20. PubMed ID: 15390101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellular inflammatory response in human spinal cords after injury.
    Fleming JC; Norenberg MD; Ramsay DA; Dekaban GA; Marcillo AE; Saenz AD; Pasquale-Styles M; Dietrich WD; Weaver LC
    Brain; 2006 Dec; 129(Pt 12):3249-69. PubMed ID: 17071951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular targets for therapeutic intervention after spinal cord injury.
    Kwon BK; Borisoff JF; Tetzlaff W
    Mol Interv; 2002 Jul; 2(4):244-58. PubMed ID: 14993395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective caspase activation may contribute to neurological dysfunction after experimental spinal cord trauma.
    Knoblach SM; Huang X; VanGelderen J; Calva-Cerqueira D; Faden AI
    J Neurosci Res; 2005 May; 80(3):369-80. PubMed ID: 15795935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting axonal myelination for improving neurological recovery in spinal cord injury.
    Wu B; Ren X
    J Neurotrauma; 2009 Oct; 26(10):1847-56. PubMed ID: 19785544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury.
    Gomes-Leal W; Corkill DJ; Freire MA; Picanço-Diniz CW; Perry VH
    Exp Neurol; 2004 Dec; 190(2):456-67. PubMed ID: 15530884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell proliferation and replacement following contusive spinal cord injury.
    Zai LJ; Wrathall JR
    Glia; 2005 May; 50(3):247-57. PubMed ID: 15739189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury.
    Yu WR; Liu T; Fehlings TK; Fehlings MG
    Eur J Neurosci; 2009 Jan; 29(1):114-31. PubMed ID: 19120440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JNK activation contributes to DP5 induction and apoptosis following traumatic spinal cord injury.
    Yin KJ; Kim GM; Lee JM; He YY; Xu J; Hsu CY
    Neurobiol Dis; 2005 Dec; 20(3):881-9. PubMed ID: 16005241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.