BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1505672)

  • 1. Lipid interaction of tetanus neurotoxin. A calorimetric and fluorescence spectroscopy study.
    Calappi E; Masserini M; Schiavo G; Montecucco C; Tettamanti G
    FEBS Lett; 1992 Sep; 309(2):107-10. PubMed ID: 1505672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gangliosides in phospholipid bilayer membranes: interaction with tetanus toxin.
    Winter A; Ulrich WP; Wetterich F; Weller U; Galla HJ
    Chem Phys Lipids; 1996 Jun; 81(1):21-34. PubMed ID: 9450318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quartz crystal microbalance investigation of the interaction of bacterial toxins with ganglioside containing solid supported membranes.
    Janshoff A; Steinem C; Sieber M; el Bayâ A; Schmidt MA; Galla HJ
    Eur Biophys J; 1997; 26(3):261-70. PubMed ID: 9273995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of neuraminidase activity by the physical state of phospholipid bilayers containing gangliosides Gd1a and Gt1b.
    Myers M; Wortman C; Freire E
    Biochemistry; 1984 Mar; 23(7):1442-8. PubMed ID: 6326803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides.
    Masserini M; Palestini P; Freire E
    Biochemistry; 1989 Jun; 28(12):5029-34. PubMed ID: 2765523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ scanning probe microscopy studies of tetanus toxin-membrane interactions.
    Slade AL; Schoeniger JS; Sasaki DY; Yip CM
    Biophys J; 2006 Dec; 91(12):4565-74. PubMed ID: 16997879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers.
    Schiavo G; Demel R; Montecucco C
    Eur J Biochem; 1991 Aug; 199(3):705-11. PubMed ID: 1868854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of microcalorimetry to characterize tetanus neurotoxin, pertussis toxin and filamentous haemagglutinin.
    Krell T; Greco F; Nicolaï MC; Dubayle J; Renauld-Mongénie G; Poisson N; Bernard I
    Biotechnol Appl Biochem; 2003 Dec; 38(Pt 3):241-51. PubMed ID: 12911336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of influenza virus with gangliosides and liposomes containing gangliosides.
    Slepushkin VA; Starov AI; Bukrinskaya AG; Imbs AB; Martynova MA; Kogtev LS; Vodovozova EL; Timofeeva NG; Molotkovsky JG; Bergelson LD
    Eur J Biochem; 1988 May; 173(3):599-605. PubMed ID: 3371350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric and fluorescence characterization of interactions between enkephalins and liposomal and synaptic plasma membranes containing gangliosides.
    Myers M; Freire E
    Biochemistry; 1985 Jul; 24(15):4076-82. PubMed ID: 3840386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain formation in phosphatidylinositol monophosphate/phosphatidylcholine mixed vesicles.
    Redfern DA; Gericke A
    Biophys J; 2004 May; 86(5):2980-92. PubMed ID: 15111413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid phase separations induced by the association of cholera toxin to phospholipid membranes containing ganglioside GM1.
    Goins B; Freire E
    Biochemistry; 1985 Mar; 24(7):1791-7. PubMed ID: 3839133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin.
    Louch HA; Buczko ES; Woody MA; Venable RM; Vann WF
    Biochemistry; 2002 Nov; 41(46):13644-52. PubMed ID: 12427026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of brain gangliosides on the formation and properties of supported lipid bilayers.
    Jordan LR; Blauch ME; Baxter AM; Cawley JL; Wittenberg NJ
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110442. PubMed ID: 31472390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand.
    Shapiro RE; Specht CD; Collins BE; Woods AS; Cotter RJ; Schnaar RL
    J Biol Chem; 1997 Nov; 272(48):30380-6. PubMed ID: 9374528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ganglioside GD1a on the fluidity and phase transition of phosphatidylcholine model membrane immobilized on porous cellulose acetate filter.
    Inagaki M; Matsunaga Y; Konagaya N; Nishikawa S; Kashimura N
    Biosci Biotechnol Biochem; 1996 Dec; 60(12):1976-81. PubMed ID: 8988630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-ganglioside interactions and synaptic plasticity: effect of calcium on specific ganglioside/peptide (valinomycin, gramicidin A)-complexes in mixed mono- and bilayers.
    Rahmann H; Schifferer F; Beitinger H
    Neurochem Int; 1992 Apr; 20(3):323-38. PubMed ID: 1284679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular interactions of lysobisphosphatidic acid with phosphatidylcholine in mixed bilayers.
    Holopainen JM; Söderlund T; Alakoskela JM; Säily M; Eriksson O; Kinnunen PK
    Chem Phys Lipids; 2005 Jan; 133(1):51-67. PubMed ID: 15589226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.