BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15056758)

  • 21. Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands.
    Kaufman J; Siegel LM; Spicer LD
    Biochemistry; 1993 Aug; 32(34):8782-91. PubMed ID: 8395881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, synthesis, and characterization of a novel hemoprotein.
    Xu Z; Farid RS
    Protein Sci; 2001 Feb; 10(2):236-49. PubMed ID: 11266610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3.
    Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H
    Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray structure of a maquette scaffold.
    Huang SS; Gibney BR; Stayrook SE; Leslie Dutton P; Lewis M
    J Mol Biol; 2003 Feb; 326(4):1219-25. PubMed ID: 12589764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ferredoxin and ferredoxin-heme maquettes.
    Gibney BR; Mulholland SE; Rabanal F; Dutton PL
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15041-6. PubMed ID: 8986760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor.
    Cochran FV; Wu SP; Wang W; Nanda V; Saven JG; Therien MJ; DeGrado WF
    J Am Chem Soc; 2005 Feb; 127(5):1346-7. PubMed ID: 15686346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonnatural amino acid ligands in heme protein design.
    Privett HK; Reedy CJ; Kennedy ML; Gibney BR
    J Am Chem Soc; 2002 Jun; 124(24):6828-9. PubMed ID: 12059195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and dynamic perturbations induced by heme binding in cytochrome b5.
    Falzone CJ; Wang Y; Vu BC; Scott NL; Bhattacharya S; Lecomte JT
    Biochemistry; 2001 Apr; 40(15):4879-91. PubMed ID: 11294656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins.
    Landfried DA; Vuletich DA; Pond MP; Lecomte JT
    Gene; 2007 Aug; 398(1-2):12-28. PubMed ID: 17550789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axial thiophenolate coordination on diiron(III)bisporphyrin: influence of heme-heme interactions on structure, function and electrochemical properties of the individual heme center.
    Sil D; Tuglak Khan FS; Rath SP
    Inorg Chem; 2014 Nov; 53(22):11925-36. PubMed ID: 25375875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assignment of heme resonances and determination of the electronic structures of high- and low-spin nitrophorin 2 by 1H and 13C NMR spectroscopy: an explanation of the order of heme methyl resonances in high-spin ferriheme proteins.
    Shokhireva TKh; Shokhirev NV; Walker FA
    Biochemistry; 2003 Jan; 42(3):679-93. PubMed ID: 12534280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120.
    Tang K; Knipp M; Liu BB; Cox N; Stabel R; He Q; Zhou M; Scheer H; Zhao KH; Gärtner W
    J Biol Chem; 2015 Jul; 290(31):19067-80. PubMed ID: 26063806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of electronic structure and properties of a Bis(histidine) heme model complex.
    Smith DM; Dupuis M; Vorpagel ER; Straatsma TP
    J Am Chem Soc; 2003 Mar; 125(9):2711-7. PubMed ID: 12603159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
    Drohat AC; Amburgey JC; Abildgaard F; Starich MR; Baldisseri D; Weber DJ
    Biochemistry; 1996 Sep; 35(36):11577-88. PubMed ID: 8794737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus.
    Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M
    J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin.
    Robinson VL; Smith BB; Arnone A
    Biochemistry; 2003 Sep; 42(34):10113-25. PubMed ID: 12939139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The solution structure of oxidized rat microsomal cytochrome b5.
    Arnesano F; Banci L; Bertini I; Felli IC
    Biochemistry; 1998 Jan; 37(1):173-84. PubMed ID: 9425037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.
    Plegaria JS; Dzul SP; Zuiderweg ER; Stemmler TL; Pecoraro VL
    Biochemistry; 2015 May; 54(18):2858-73. PubMed ID: 25790102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.