BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15056851)

  • 1. Human DNA glycosylases involved in the repair of oxidatively damaged DNA.
    Ide H; Kotera M
    Biol Pharm Bull; 2004 Apr; 27(4):480-5. PubMed ID: 15056851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-DDB as a General Sensor of DNA Damage in Chromatin: Multifaceted Approaches to Assess Its Direct Role in Base Excision Repair.
    Raja SJ; Van Houten B
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional roles and cancer variants of the bifunctional glycosylase NEIL2.
    Hua AB; Sweasy JB
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1():40-56. PubMed ID: 37310399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of DNA glycosylase activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Darwanto A; Farrel A; Rogstad DK; Sowers LC
    Anal Biochem; 2009 Nov; 394(1):13-23. PubMed ID: 19607800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase.
    Darwanto A; Theruvathu JA; Sowers JL; Rogstad DK; Pascal T; Goddard W; Sowers LC
    J Biol Chem; 2009 Jun; 284(23):15835-46. PubMed ID: 19324873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted nuclear irradiation with a proton microbeam induces oxidative DNA base damage and triggers the recruitment of DNA glycosylases OGG1 and NTH1.
    Robeska E; Lalanne K; Vianna F; Sutcu HH; Khobta A; Busso D; Radicella JP; Campalans A; Baldeyron C
    DNA Repair (Amst); 2024 Jan; 133():103610. PubMed ID: 38101146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preorganized Internal Electric Field Promotes a Double-Displacement Mechanism for the Adenine Excision Reaction by Adenine DNA Glycosylase.
    Diao W; Farrell JD; Wang B; Ye F; Wang Z
    J Phys Chem B; 2023 Oct; 127(40):8551-8564. PubMed ID: 37782825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced glutathione levels confer resistance to apoptotic and ferroptotic programmed cell death in NEIL DNA glycosylase deficient HAP1 cells.
    Neurauter CG; Pannone M; Sousa MML; Wang W; Kuśnierczyk A; Luna L; Sætrom P; Scheffler K; Bjørås M
    Free Radic Biol Med; 2024 Mar; 213():470-487. PubMed ID: 38301978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction.
    de Sousa MML; Ye J; Luna L; Hildrestrand G; Bjørås K; Scheffler K; Bjørås M
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation.
    Agustina L; Hahm SH; Han SH; Tran AH; Chung JH; Park JH; Park JW; Han YS
    BMC Mol Biol; 2014 Aug; 15():17. PubMed ID: 25127721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulations reveal a common binding mode for glycosylase binding of oxidatively damaged DNA lesions.
    Song K; Kelso C; de los Santos C; Grollman AP; Simmerling C
    J Am Chem Soc; 2007 Nov; 129(47):14536-7. PubMed ID: 17988127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-State Diffusion Model of DNA Glycosylase Translocation along Stretched DNA as Revealed by Free Energy Landscapes at the All-Atom Level.
    Kim H; Pak Y
    J Chem Theory Comput; 2024 Mar; 20(6):2666-2675. PubMed ID: 38451471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level.
    Hu J; Liu MH; Li Y; Tang B; Zhang CY
    Chem Sci; 2018 Jan; 9(3):712-720. PubMed ID: 29629140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
    Parsons ZD; Bland JM; Mullins EA; Eichman BF
    J Am Chem Soc; 2016 Sep; 138(36):11485-8. PubMed ID: 27571247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases.
    Bangalore DM; Heil HS; Mehringer CF; Hirsch L; Hemmen K; Heinze KG; Tessmer I
    Sci Rep; 2020 Sep; 10(1):15484. PubMed ID: 32968112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Potential role of human DNA-repair enzymes hMTH1, hOGG1 and hMYHalpha in the hepatocarcinogenesis].
    Cheng B; Jüngst C; Lin J; Caselmann WH
    J Huazhong Univ Sci Technolog Med Sci; 2002; 22(3):206-11, 215. PubMed ID: 12658805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A controlled T7 transcription-driven symmetric amplification cascade machinery for single-molecule detection of multiple repair glycosylases.
    Wang LJ; Liang L; Liu BJ; Jiang B; Zhang CY
    Chem Sci; 2021 Mar; 12(15):5544-5554. PubMed ID: 34168791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background.
    Wang LJ; Lu YY; Zhang CY
    Chem Sci; 2020 Jan; 11(2):587-595. PubMed ID: 32206275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative DNA damage & repair: An introduction.
    Cadet J; Davies KJA
    Free Radic Biol Med; 2017 Jun; 107():2-12. PubMed ID: 28363603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SnapShot: DNA repair pathways.
    Nunomiya A; Szakal B; Branzei D
    Mol Cell; 2024 Jan; 84(1):180-180.e1. PubMed ID: 38181759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.