BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15056851)

  • 21. Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background.
    Wang LJ; Lu YY; Zhang CY
    Chem Sci; 2020 Jan; 11(2):587-595. PubMed ID: 32206275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative DNA damage & repair: An introduction.
    Cadet J; Davies KJA
    Free Radic Biol Med; 2017 Jun; 107():2-12. PubMed ID: 28363603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SnapShot: DNA repair pathways.
    Nunomiya A; Szakal B; Branzei D
    Mol Cell; 2024 Jan; 84(1):180-180.e1. PubMed ID: 38181759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA glycosylases in the base excision repair of DNA.
    Krokan HE; Standal R; Slupphaug G
    Biochem J; 1997 Jul; 325 ( Pt 1)(Pt 1):1-16. PubMed ID: 9224623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA glycosylase recognition and catalysis.
    Fromme JC; Banerjee A; Verdine GL
    Curr Opin Struct Biol; 2004 Feb; 14(1):43-9. PubMed ID: 15102448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overview of base excision repair biochemistry.
    Kim YJ; Wilson DM
    Curr Mol Pharmacol; 2012 Jan; 5(1):3-13. PubMed ID: 22122461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA glycosylases: in DNA repair and beyond.
    Jacobs AL; Schär P
    Chromosoma; 2012 Feb; 121(1):1-20. PubMed ID: 22048164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased Age-Adjusted Cancer Mortality After the Third mRNA-Lipid Nanoparticle Vaccine Dose During the COVID-19 Pandemic in Japan.
    Gibo M; Kojima S; Fujisawa A; Kikuchi T; Fukushima M
    Cureus; 2024 Apr; 16(4):e57860. PubMed ID: 38721172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease.
    Ziółkowska S; Kosmalski M; Kołodziej Ł; Jabłkowska A; Szemraj JZ; Pietras T; Jabłkowski M; Czarny PL
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer.
    Chen L; Huan X; Gao XD; Yu WH; Xiao GH; Li TF; Wang ZY; Zhang YC
    Cancers (Basel); 2022 Nov; 14(23):. PubMed ID: 36497204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases.
    Tran A; Zheng S; White DS; Curry AM; Cen Y
    Chem Sci; 2020 Oct; 11(43):11818-11826. PubMed ID: 34123208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of
    Kontizas E; Tastsoglou S; Karamitros T; Karayiannis Y; Kollia P; Hatzigeorgiou AG; Sgouras DN
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33339161
    [No Abstract]   [Full Text] [Related]  

  • 33. Foods with Potential Prooxidant and Antioxidant Effects Involved in Parkinson's Disease.
    Miranda-Díaz AG; García-Sánchez A; Cardona-Muñoz EG
    Oxid Med Cell Longev; 2020; 2020():6281454. PubMed ID: 32832004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How to fix DNA-protein crosslinks.
    Kühbacher U; Duxin JP
    DNA Repair (Amst); 2020 Oct; 94():102924. PubMed ID: 32683310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair.
    Quiñones JL; Thapar U; Wilson SH; Ramsden DA; Demple B
    DNA Repair (Amst); 2020 Mar; 87():102773. PubMed ID: 31945542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability.
    Kang DM; Shin JI; Kim JB; Lee K; Chung JH; Yang HW; Kim KN; Han YS
    BMC Mol Cell Biol; 2019 Nov; 20(1):54. PubMed ID: 31775627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress.
    Yang B; Figueroa DM; Hou Y; Babbar M; Baringer SL; Croteau DL; Bohr VA
    Free Radic Biol Med; 2019 Sep; 141():47-58. PubMed ID: 31175982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early divergence of mutational processes in human fetal tissues.
    Kuijk E; Blokzijl F; Jager M; Besselink N; Boymans S; Chuva de Sousa Lopes SM; van Boxtel R; Cuppen E
    Sci Adv; 2019 May; 5(5):eaaw1271. PubMed ID: 31149636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"), a condition that significantly impairs the quality of life of many cancer survivors.
    Ren X; Boriero D; Chaiswing L; Bondada S; St Clair DK; Butterfield DA
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1088-1097. PubMed ID: 30759363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AP-Endonuclease 1 Accelerates Turnover of Human 8-Oxoguanine DNA Glycosylase by Preventing Retrograde Binding to the Abasic-Site Product.
    Esadze A; Rodriguez G; Cravens SL; Stivers JT
    Biochemistry; 2017 Apr; 56(14):1974-1986. PubMed ID: 28345889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.