These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 15056912)

  • 21. Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales.
    Liu WW; Pan J; Feng X; Li M; Xu Y; Wang F; Zhou NY
    Environ Microbiol; 2020 Jan; 22(1):329-342. PubMed ID: 31691434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.
    Chikere CB; Surridge K; Okpokwasili GC; Cloete TE
    Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures.
    Sakai N; Kurisu F; Yagi O; Nakajima F; Yamamoto K
    J Biosci Bioeng; 2009 Dec; 108(6):501-7. PubMed ID: 19914583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils.
    Zhang Z; Gai L; Hou Z; Yang C; Ma C; Wang Z; Sun B; He X; Tang H; Xu P
    Bioresour Technol; 2010 Nov; 101(21):8452-6. PubMed ID: 20573503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6.
    Ramu S; Seetharaman B
    J Environ Sci Health B; 2014; 49(1):23-34. PubMed ID: 24138465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching.
    Johnson RJ; Smith BE; Sutton PA; McGenity TJ; Rowland SJ; Whitby C
    ISME J; 2011 Mar; 5(3):486-96. PubMed ID: 20962873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity of the chlorite dismutase gene in low and high organic carbon rhizosphere soil colonized by perchlorate-reducing bacteria.
    Struckhoff GC; Livermore JA; Parkin GF
    Int J Phytoremediation; 2013; 15(9):830-43. PubMed ID: 23819279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils.
    Mera N; Iwasaki K
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):437-45. PubMed ID: 17940764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea.
    Chang JS; Kim YH; Kim KW
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerobic degradation of aromatic compounds.
    Díaz E; Jiménez JI; Nogales J
    Curr Opin Biotechnol; 2013 Jun; 24(3):431-42. PubMed ID: 23122741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U.
    García B; Olivera ER; Miñambres B; Carnicero D; Muñiz C; Naharro G; Luengo JM
    Appl Environ Microbiol; 2000 Oct; 66(10):4575-8. PubMed ID: 11010921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis.
    Berger M; Brock NL; Liesegang H; Dogs M; Preuth I; Simon M; Dickschat JS; Brinkhoff T
    Appl Environ Microbiol; 2012 May; 78(10):3539-51. PubMed ID: 22407685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
    Teufel R; Mascaraque V; Ismail W; Voss M; Perera J; Eisenreich W; Haehnel W; Fuchs G
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14390-5. PubMed ID: 20660314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida.
    Martinez-Blanco H; Reglero A; Luengo JM
    Biochem Biophys Res Commun; 1990 Mar; 167(3):891-7. PubMed ID: 2322284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide sequence of rice 4-coumarate:CoA ligase gene, 4-CL.1.
    Zhao Y; Kung SD; Dube SK
    Nucleic Acids Res; 1990 Oct; 18(20):6144. PubMed ID: 2235510
    [No Abstract]   [Full Text] [Related]  

  • 38. Production of phenylacetic acid by anaerobes.
    Mayrand D; Bourgeau G
    J Clin Microbiol; 1982 Oct; 16(4):747-50. PubMed ID: 7153325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recurring cluster and operon assembly for Phenylacetate degradation genes.
    Martin FJ; McInerney JO
    BMC Evol Biol; 2009 Feb; 9():36. PubMed ID: 19208251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The metabolism of phenylacetic acid by Aspergillus fumigatus ATCC 28282: identification of 2,6-dihydroxyphenylacetic acid.
    Yoshizako F; Chubachi M; Nishimura A; Ueno T
    Can J Microbiol; 1977 Sep; 23(9):1140-4. PubMed ID: 332293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.