BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15056955)

  • 1. Synthesis of panax acetylenes: chiral syntheses of acetylpanaxydol, PQ-3 and panaxydiol.
    Satoh M; Watanabe M; Kawahata M; Mohri K; Yoshida Y; Isobe K; Fujimoto Y
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):418-21. PubMed ID: 15056955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on panax acetylenes: absolute structure of a new panax acetylene, and inhibitory effects of related acetylenes on the growth of L-1210 cells.
    Satoh Y; Satoh M; Isobe K; Mohri K; Yoshida Y; Fujimoto Y
    Chem Pharm Bull (Tokyo); 2007 Apr; 55(4):561-4. PubMed ID: 17409548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and absolute configurations of the cytotoxic polyacetylenes isolated from the callus of Panax ginseng.
    Fujimoto Y; Satoh M; Takeuchi N; Kirisawa M
    Chem Pharm Bull (Tokyo); 1990 Jun; 38(6):1447-50. PubMed ID: 2093310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoenzymatic asymmetric total syntheses of antitumor agents (3R,9R,10R)- and (3S,9R,10R)-Panaxytriol and (R)- and (S)-Falcarinol from Panax ginseng using an enantioconvergent enzyme-triggered cascade reaction.
    Mayer SF; Steinreiber A; Orru RV; Faber K
    J Org Chem; 2002 Dec; 67(26):9115-21. PubMed ID: 12492310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute structure of panaxytriol.
    Satoh M; Ishii M; Watanabe M; Isobe K; Uchiyama T; Fujimoto Y
    Chem Pharm Bull (Tokyo); 2002 Jan; 50(1):126-8. PubMed ID: 11824573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total synthesis of (-)-(6S,7S,8S,9R,10S,2'S)-membrenone-A and (-)-(6S,7S,8S,9R,10S)- membrenone-B and structural assignment of membrenone-C.
    Sampson RA; Perkins MV
    Org Lett; 2002 May; 4(10):1655-8. PubMed ID: 12000266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of enantiomerically pure alpha-substituted propargylic amines by reaction of organoaluminum reagents with oxazolidines.
    Blanchet J; Bonin M; Micouin L; Husson HP
    J Org Chem; 2000 Oct; 65(20):6423-6. PubMed ID: 11052084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng.
    Rho MC; Lee HS; Lee SW; Chang JS; Kwon OE; Chung MY; Kim YK
    J Agric Food Chem; 2005 Feb; 53(4):919-22. PubMed ID: 15712998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new C-20 polyacetylene from the sponge Callyspongia pseudoreticulata.
    Braekman JC; Daloze D; Devijver C; Dubut D; van Soest RW
    J Nat Prod; 2003 Jun; 66(6):871-2. PubMed ID: 12828480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of diynes and tetraynes from in situ desilylation/dimerization of acetylenes.
    Heuft MA; Collins SK; Yap GP; Fallis AG
    Org Lett; 2001 Sep; 3(18):2883-6. PubMed ID: 11529781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of polyacetylenic acids isolated from Heisteria acuminata.
    Zeni G; Panatieri RB; Lissner E; Menezes PH; Braga AL; Stefani HA
    Org Lett; 2001 Mar; 3(6):819-21. PubMed ID: 11263890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total synthesis of (+)- and (-)-duryne: a potent anticancer agent from the marine sponge Cribrochalina dura. Establishment of the central double bond geometry and the absolute configuration of the chiral centers.
    Gung BW; Omollo AO
    J Org Chem; 2008 Feb; 73(3):1067-70. PubMed ID: 18184009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gymnasterkoreayne G, a new inhibitory polyacetylene against NFAT transcription factor from Gymnaster koraiensis.
    Dat NT; Cai XF; Shen Q; Lee IS; Lee EJ; Park YK; Bae K; Kim YH
    Chem Pharm Bull (Tokyo); 2005 Sep; 53(9):1194-6. PubMed ID: 16141596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Straightforward synthesis of panaxytriol: an active component of Red Ginseng.
    Yun H; Danishefsky SJ
    J Org Chem; 2003 May; 68(11):4519-22. PubMed ID: 12762760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of naturally occurring acetylenes via an alkylidene carbenoid rearrangement.
    Shun AL; Tykwinski RR
    J Org Chem; 2003 Aug; 68(17):6810-3. PubMed ID: 12919055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkyne-containing chelating ligands: synthesis, properties and metal coordination of 1,2-di(quinolin-8-yl)ethyne.
    Greco NJ; Hysell M; Goldenberg JR; Rheingold AL; Tor Y
    Dalton Trans; 2006 May; (19):2288-90. PubMed ID: 16688316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concise syntheses of coronarin A, coronarin E, austrochaparol and pacovatinin A.
    Miyake T; Uda K; Kinoshita M; Fujii M; Akita H
    Chem Pharm Bull (Tokyo); 2008 Mar; 56(3):398-403. PubMed ID: 18310958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of callyberynes A and B, polyacetylenic hydrocarbons from marine sponges.
    López S; Fernández-Trillo F; Castedo L; Saá C
    Org Lett; 2003 Oct; 5(20):3725-8. PubMed ID: 14507215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxic acetylenes from Panax quinquefolium.
    Fujimoto Y; Satoh M; Takeuchi N; Kirisawa M
    Chem Pharm Bull (Tokyo); 1991 Feb; 39(2):521-3. PubMed ID: 2054881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Polyacetylene compounds from Panax notoginsenoside].
    Rao G; Wang X; Jin W
    Zhong Yao Cai; 1997 Jun; 20(6):298-9. PubMed ID: 12572474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.