BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15057411)

  • 1. [Chips instead of mice: cells on bioelectronic sensor-chips as an alternative to animal experiments].
    Otto AM; Brischwein M; Motrescu E; Cabala E; Grothe H; Stepper C; Wolf B
    ALTEX; 2004; 21 Suppl 3():70-6. PubMed ID: 15057411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional cellular assays with multiparametric silicon sensor chips.
    Brischwein M; Motrescu ER; Cabala E; Otto AM; Grothe H; Wolf B
    Lab Chip; 2003 Nov; 3(4):234-40. PubMed ID: 15007452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of drug action on tumor cell metabolism using electronic sensor chips.
    Otto AM; Brischwein M; Motrescu E; Wolf B
    Arch Pharm (Weinheim); 2004 Dec; 337(12):682-6. PubMed ID: 15597401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiparametric sensor-chip based technology for monitoring metabolic activity: A proof-of-principle study with live tissue.
    Sprague LD; Beregov V; Von Sternbach G; Brischwein M; Otto AM; Adam M; Wolf B; Molls M
    Clin Lab; 2006; 52(7-8):375-84. PubMed ID: 16955636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system.
    Ceriotti L; Kob A; Drechsler S; Ponti J; Thedinga E; Colpo P; Ehret R; Rossi F
    Anal Biochem; 2007 Dec; 371(1):92-104. PubMed ID: 17709091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic analysis of metabolic effects of chloroacetaldehyde and cytochalasin B on tumor cells using bioelectronic sensor chips.
    Motrescu ER; Otto AM; Brischwein M; Zahler S; Wolf B
    J Cancer Res Clin Oncol; 2005 Oct; 131(10):683-91. PubMed ID: 16047190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of silicon sensor technologies to tumor tissue in vitro: detection of metabolic correlates of chemosensitivity.
    Mestres-Ventura P; Morguet A; Schofer A; Laue M; Schmidt W
    Methods Mol Med; 2005; 111():109-25. PubMed ID: 15911976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro system for the prediction of hepatotoxic effects in primary hepatocytes.
    Thedinga E; Ullrich A; Drechsler S; Niendorf R; Kob A; Runge D; Keuer A; Freund I; Lehmann M; Ehret R
    ALTEX; 2007; 24(1):22-34. PubMed ID: 17361318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable cell-based impedance sensor for toxicity testing of drinking water.
    Curtis TM; Widder MW; Brennan LM; Schwager SJ; van der Schalie WH; Fey J; Salazar N
    Lab Chip; 2009 Aug; 9(15):2176-83. PubMed ID: 19606294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparametric sensor chips for chemosensitivity testing of sensitive and resistant tumor cells.
    Otto AM; Brischwein M; Grothe H; Motrescu E; Wolf B
    Recent Results Cancer Res; 2003; 161():39-47. PubMed ID: 12528797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors.
    Sin A; Chin KC; Jamil MF; Kostov Y; Rao G; Shuler ML
    Biotechnol Prog; 2004; 20(1):338-45. PubMed ID: 14763861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips.
    Otto AM; Brischwein M; Niendorf A; Henning T; Motrescu E; Wolf B
    Cancer Detect Prev; 2003; 27(4):291-6. PubMed ID: 12893077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: measurements in metabolic cell-culture chips.
    Buehler SM; Stubbe M; Gimsa U; Baumann W; Gimsa J
    Toxicol Lett; 2011 Nov; 207(2):182-90. PubMed ID: 21939746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture.
    Hanson MA; Ge X; Kostov Y; Brorson KA; Moreira AR; Rao G
    Biotechnol Bioeng; 2007 Jul; 97(4):833-41. PubMed ID: 17216654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microphysiometry: new technology for evaluation of anticancer drug activity in human tumor cells in vitro.
    Ekelund S; Nygren P; Larsson R
    Anticancer Drugs; 1998 Jul; 9(6):531-8. PubMed ID: 9877241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced electrochemical sensors for cell cancer monitoring.
    Andreescu S; Sadik OA
    Methods; 2005 Sep; 37(1):84-93. PubMed ID: 16199176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.
    Kieninger J; Tamari Y; Enderle B; Jobst G; Sandvik JA; Pettersen EO; Urban GA
    Biosensors (Basel); 2018 Apr; 8(2):. PubMed ID: 29701726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel electrochemical sensor system for monitoring metabolic activity during the growth and cultivation of prokaryotic and eukaryotic cells.
    Pescheck M; Schrader J; Sell D
    Bioelectrochemistry; 2005 Sep; 67(1):47-55. PubMed ID: 15967400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated platform for sensor-based monitoring and controlled assays of living cells and tissues.
    Wolf P; Brischwein M; Kleinhans R; Demmel F; Schwarzenberger T; Pfister C; Wolf B
    Biosens Bioelectron; 2013 Dec; 50():111-7. PubMed ID: 23838277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.