BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15057514)

  • 1. Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae.
    Portmann R; Magnani D; Stoyanov JV; Schmechel A; Multhaup G; Solioz M
    J Biol Inorg Chem; 2004 Jun; 9(4):396-402. PubMed ID: 15057514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases.
    Strausak D; Solioz M
    J Biol Chem; 1997 Apr; 272(14):8932-6. PubMed ID: 9083014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae.
    Magnani D; Solioz M
    Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor.
    Cobine P; Wickramasinghe WA; Harrison MD; Weber T; Solioz M; Dameron CT
    FEBS Lett; 1999 Feb; 445(1):27-30. PubMed ID: 10069368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cop-like operon: structure and organization in species of the Lactobacillale order.
    Reyes A; Leiva A; Cambiazo V; Méndez MA; González M
    Biol Res; 2006; 39(1):87-93. PubMed ID: 16629168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of promoter mutations on the in vivo regulation of the cop operon of Enterococcus hirae by copper(I) and copper(II).
    Wunderli-Ye H; Solioz M
    Biochem Biophys Res Commun; 1999 Jun; 259(2):443-9. PubMed ID: 10362527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions.
    Lu ZH; Dameron CT; Solioz M
    Biometals; 2003 Mar; 16(1):137-43. PubMed ID: 12572673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stress response protein Gls24 is induced by copper and interacts with the CopZ copper chaperone of Enterococcus hirae.
    Stoyanov JV; Mancini S; Lu ZH; Mourlane F; Poulsen KR; Wimmer R; Solioz M
    FEMS Microbiol Lett; 2010 Jan; 302(1):69-75. PubMed ID: 19903200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae.
    Lu ZH; Solioz M
    J Biol Chem; 2001 Dec; 276(51):47822-7. PubMed ID: 11585824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper homeostasis in Enterococcus hirae.
    Solioz M; Stoyanov JV
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):183-95. PubMed ID: 12829267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CopY-like copper inducible repressors are putative 'winged helix' proteins.
    Portmann R; Poulsen KR; Wimmer R; Solioz M
    Biometals; 2006 Feb; 19(1):61-70. PubMed ID: 16502332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae.
    Odermatt A; Solioz M
    J Biol Chem; 1995 Mar; 270(9):4349-54. PubMed ID: 7876197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors.
    O'Brien H; Alvin JW; Menghani SV; Sanchez-Rosario Y; Van Doorslaer K; Johnson MDL
    mSphere; 2020 May; 5(3):. PubMed ID: 32461276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance.
    Multhaup G; Strausak D; Bissig KD; Solioz M
    Biochem Biophys Res Commun; 2001 Oct; 288(1):172-7. PubMed ID: 11594769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB.
    Odermatt A; Krapf R; Solioz M
    Biochem Biophys Res Commun; 1994 Jul; 202(1):44-8. PubMed ID: 8037745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium and Enterococcus faecalis.
    Hasman H
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3019-3025. PubMed ID: 16151212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of proteolysis in copper homoeostasis.
    Solioz M
    Biochem Soc Trans; 2002 Aug; 30(4):688-91. PubMed ID: 12196165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P(1B)-type ATPase operons.
    Teramoto H; Inui M; Yukawa H
    Biosci Biotechnol Biochem; 2012; 76(10):1952-8. PubMed ID: 23090582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae.
    Odermatt A; Suter H; Krapf R; Solioz M
    J Biol Chem; 1993 Jun; 268(17):12775-9. PubMed ID: 8048974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.