These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15057995)

  • 1. Nanoindentation of soft hydrated materials for application to vascular tissues.
    Ebenstein DM; Pruitt LA
    J Biomed Mater Res A; 2004 May; 69(2):222-32. PubMed ID: 15057995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.
    Ferrara TL; Boughton P; Slavich E; Wroe S
    PLoS One; 2013; 8(11):e81196. PubMed ID: 24260558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the elastic/plastic transition of human enamel by nanoindentation.
    Ang SF; Scholz T; Klocke A; Schneider GA
    Dent Mater; 2009 Nov; 25(11):1403-10. PubMed ID: 19647864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
    Gupta S; Lin J; Ashby P; Pruitt L
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodological framework for nanomechanical characterization of soft biomaterials and polymers.
    Arevalo SE; Ebenstein DM; Pruitt LA
    J Mech Behav Biomed Mater; 2022 Oct; 134():105384. PubMed ID: 35961240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels.
    Kohn JC; Ebenstein DM
    J Mech Behav Biomed Mater; 2013 Apr; 20():316-26. PubMed ID: 23517775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis.
    Liu K; VanLandingham MR; Ovaert TC
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):355-62; discussion 362-3. PubMed ID: 19627842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An atomic force microscope tip designed to measure time-varying nanomechanical forces.
    Sahin O; Magonov S; Su C; Quate CF; Solgaard O
    Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials.
    Kaufman JD; Klapperich CM
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):312-7. PubMed ID: 19627837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design.
    Miller DC; Webster TJ; Haberstroh KM
    Expert Rev Med Devices; 2004 Nov; 1(2):259-68. PubMed ID: 16293046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing mechanical properties of fully hydrated gels and biological tissues.
    Constantinides G; Kalcioglu ZI; McFarland M; Smith JF; Van Vliet KJ
    J Biomech; 2008 Nov; 41(15):3285-9. PubMed ID: 18922534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size effects in nanoindentation of hard and soft surfaces.
    Alderighi M; Ierardi V; Fuso F; Allegrini M; Solaro R
    Nanotechnology; 2009 Jun; 20(23):235703. PubMed ID: 19451684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydration on nanoindentation induced energy expenditure of dentin.
    Bertassoni LE; Swain MV
    J Biomech; 2012 Jun; 45(9):1679-83. PubMed ID: 22537569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile mesoindentation system to evaluate the micromechanical properties of soft, hydrated substrates on a cellular scale.
    Saxena T; Gilbert JL; Hasenwinkel JM
    J Biomed Mater Res A; 2009 Sep; 90(4):1206-17. PubMed ID: 18683232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical analysis of bone tissue engineering scaffolds.
    Kaufman JD; Song J; Klapperich CM
    J Biomed Mater Res A; 2007 Jun; 81(3):611-23. PubMed ID: 17187400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing.
    Buffinton CM; Tong KJ; Blaho RA; Buffinton EM; Ebenstein DM
    J Mech Behav Biomed Mater; 2015 Nov; 51():367-79. PubMed ID: 26295450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of porcine carotid arteries for vascular tissue engineering applications.
    McFetridge PS; Daniel JW; Bodamyali T; Horrocks M; Chaudhuri JB
    J Biomed Mater Res A; 2004 Aug; 70(2):224-34. PubMed ID: 15227667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior.
    Ferguson VL
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):364-74. PubMed ID: 19627843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.
    Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T
    Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.