These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15058332)

  • 1. Acoustic diagnosis for porous medium with circular cylindrical pores.
    Roh HS; Yoon SW
    J Acoust Soc Am; 2004 Mar; 115(3):1114-24. PubMed ID: 15058332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone.
    Lee KI; Humphrey VF; Leighton TG; Yoon SW
    Ultrasonics; 2007 Nov; 46(4):323-30. PubMed ID: 17573089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
    Hughes ER; Leighton TG; Petley GW; White PR; Chivers RC
    Ultrasonics; 2003 Jul; 41(5):365-8. PubMed ID: 12788218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores.
    Dupont T; Leclaire P; Panneton R
    J Acoust Soc Am; 2013 Apr; 133(4):2136-45. PubMed ID: 23556583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biot theory: a review of its application to ultrasound propagation through cancellous bone.
    Haire TJ; Langton CM
    Bone; 1999 Apr; 24(4):291-5. PubMed ID: 10221540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase velocity and normalized broadband ultrasonic attenuation in Polyacetal cuboid bone-mimicking phantoms.
    Lee KI; Choi MJ
    J Acoust Soc Am; 2007 Jun; 121(6):EL263-9. PubMed ID: 17552579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear acoustic waves in porous media in the context of Biot's theory.
    Donskoy DM; Khashanah K; McKee TG
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2521-8. PubMed ID: 11536846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabric dependence of wave propagation in anisotropic porous media.
    Cowin SC; Cardoso L
    Biomech Model Mechanobiol; 2011 Feb; 10(1):39-65. PubMed ID: 20461539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem.
    Sebaa N; Fellah ZE; Fellah M; Ogam E; Wirgin A; Mitri FG; Depollier C; Lauriks W
    J Acoust Soc Am; 2006 Oct; 120(4):1816-24. PubMed ID: 17069280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase velocity analysis of acoustic propagation in trabecular bone.
    Villarreal A; Medina L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1332-5. PubMed ID: 21095931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound attenuation in cylindrical micro-pores: nondestructive porometry of ion-track membranes.
    Gómez Alvarez-Arenas TE; Apel PY; Orelovitch O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2442-9. PubMed ID: 19049923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.