BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15058354)

  • 21. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of vocal aging using parameters extracted from the glottal signal.
    Forero Mendoza LA; Cataldo E; Vellasco MM; Silva MA; Apolinário JA
    J Voice; 2014 Sep; 28(5):532-7. PubMed ID: 24880675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling measured glottal volume velocity waveforms.
    Verneuil A; Berry DA; Kreiman J; Gerratt BR; Ye M; Berke GS
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of glottal instants using electroglottographic signal for vulnerable cases of voicing.
    Mandal T; Rao KS; Gupta SK
    Healthc Technol Lett; 2020 Oct; 7(5):132-138. PubMed ID: 33282323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semi-occluded vocal tract exercises: aerodynamic and electroglottographic measurements in singers.
    Dargin TC; Searl J
    J Voice; 2015 Mar; 29(2):155-64. PubMed ID: 25261954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J; Lã FM; Gill BP
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glottal contact quotient in Mediterranean tongue trill.
    Hamdan AL; Nassar J; Al Zaghal Z; El-Khoury E; Bsat M; Tabri D
    J Voice; 2012 Sep; 26(5):669.e11-5. PubMed ID: 22082865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroglottographic analysis of actresses and nonactresses' voices in different levels of intensity.
    Master S; Guzman M; Carlos de Miranda H; Lloyd A
    J Voice; 2013 Mar; 27(2):187-94. PubMed ID: 23294706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of glottal open regions by exploiting changes in the vocal tract system characteristics.
    Prasad RS; Yegnanarayana B
    J Acoust Soc Am; 2016 Jul; 140(1):666. PubMed ID: 27475188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. What do male singers mean by modal and falsetto register? An investigation of the glottal voice source.
    Salomão GL; Sundberg J
    Logoped Phoniatr Vocol; 2009; 34(2):73-83. PubMed ID: 19363740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of aerodynamic and electroglottographic parameters in evaluating clinically relevant voicing patterns.
    Peterson KL; Verdolini-Marston K; Barkmeier JM; Hoffman HT
    Ann Otol Rhinol Laryngol; 1994 May; 103(5 Pt 1):335-46. PubMed ID: 8179248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electroglottographic wavegrams: a technique for visualizing vocal fold dynamics noninvasively.
    Herbst CT; Fitch WT; Svec JG
    J Acoust Soc Am; 2010 Nov; 128(5):3070-8. PubMed ID: 21110602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerodynamic and acoustical measures of speech, operatic, and Broadway vocal styles in a professional female singer.
    Stone RE; Cleveland TF; Sundberg PJ; Prokop J
    J Voice; 2003 Sep; 17(3):283-97. PubMed ID: 14513952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating perceived phonatory pressedness in singing from flow glottograms.
    Sundberg J; Thalén M; Alku P; Vilkman E
    J Voice; 2004 Mar; 18(1):56-62. PubMed ID: 15070224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective Glottal Instant Detection and Electroglottographic Parameter Extraction for Automated Voice Pathology Assessment.
    Deshpande PS; Manikandan MS
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):398-408. PubMed ID: 28103563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E; Alku P
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.
    Portillo MP; Rojas S; Guzman M; Quezada C
    J Voice; 2018 Mar; 32(2):200-208. PubMed ID: 28579159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.