These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15058357)

  • 1. Enhanced ultrasound transmission through the human skull using shear mode conversion.
    Clement GT; White PJ; Hynynen K
    J Acoust Soc Am; 2004 Mar; 115(3):1356-64. PubMed ID: 15058357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal and shear mode ultrasound propagation in human skull bone.
    White PJ; Clement GT; Hynynen K
    Ultrasound Med Biol; 2006 Jul; 32(7):1085-96. PubMed ID: 16829322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer-controlled ultrasound pulser-receiver system for transskull fluid detection using a shear wave transmission technique.
    Tang SC; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1772-83. PubMed ID: 17941383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study.
    Pichardo S; Hynynen K
    Phys Med Biol; 2007 Dec; 52(24):7313-32. PubMed ID: 18065841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull.
    Hayner M; Hynynen K
    J Acoust Soc Am; 2001 Dec; 110(6):3319-30. PubMed ID: 11785832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles.
    Jing B; Strassle Rojas S; Lindsey BD
    Med Phys; 2023 May; 50(5):3092-3102. PubMed ID: 36810723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of internal reflection in transskull phase distortion.
    Clement GT; Sun J; Hynynen K
    Ultrasonics; 2001 Mar; 39(2):109-13. PubMed ID: 11270628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation, scattering, and absorption of ultrasound in the skull bone.
    Pinton G; Aubry JF; Bossy E; Muller M; Pernot M; Tanter M
    Med Phys; 2012 Jan; 39(1):299-307. PubMed ID: 22225300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focusing of therapeutic ultrasound through a human skull: a numerical study.
    Sun J; Hynynen K
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1705-15. PubMed ID: 9745750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial shear-mode ultrasound: assessment of imaging performance and excitation techniques.
    Yousefi A; Goertz DE; Hynynen K
    IEEE Trans Med Imaging; 2009 May; 28(5):763-74. PubMed ID: 19150789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption of longitudinal and shear waves and generation of heat in soft tissues.
    Filipczyński L
    Ultrasound Med Biol; 1986 Mar; 12(3):223-8. PubMed ID: 3962007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-reversal transcranial ultrasound beam focusing using a k-space method.
    Jing Y; Meral FC; Clement GT
    Phys Med Biol; 2012 Feb; 57(4):901-17. PubMed ID: 22290477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phased array ultrasound imaging through planar tissue layers.
    Smith SW; Trahey GE; von Ramm OT
    Ultrasound Med Biol; 1986 Mar; 12(3):229-43. PubMed ID: 3962008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skull's Photoacoustic Attenuation and Dispersion Modeling with Deterministic Ray-Tracing: Towards Real-Time Aberration Correction.
    Mohammadi L; Behnam H; Tavakkoli J; Avanaki MRN
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30654543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area.
    Sun J; Hynynen K
    J Acoust Soc Am; 1999 Apr; 105(4):2519-27. PubMed ID: 10212433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of the murine skull on high-frequency transcranial photoacoustic brain imaging.
    Liang B; Liu W; Zhan Q; Li M; Zhuang M; Liu QH; Yao J
    J Biophotonics; 2019 Jul; 12(7):e201800466. PubMed ID: 30843372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.