BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15058719)

  • 1. Experimental studies of adaptation in Clarkia xantiana. I. Sources of trait variation across a subspecies border.
    Eckhart VM; Geber MA; McGuire CM
    Evolution; 2004 Jan; 58(1):59-70. PubMed ID: 15058719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.
    Anderson JT; Eckhart VM; Geber MA
    Evolution; 2015 Sep; 69(9):2249-61. PubMed ID: 26257193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border.
    Geber MA; Eckhart VM
    Evolution; 2005 Mar; 59(3):521-31. PubMed ID: 15856695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollinator community structure and sources of spatial variation in plant--pollinator interactions in Clarkia xantiana ssp. xantiana.
    Moeller DA
    Oecologia; 2005 Jan; 142(1):28-37. PubMed ID: 15338417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the self-pollinating flower in Clarkia xantiana (Onagraceae). I. Size and development of floral organs.
    Runions CJ; Geber MA
    Am J Bot; 2000 Oct; 87(10):1439-51. PubMed ID: 11034919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographic structure of pollinator communities, reproductive assurance, and the evolution of self-pollination.
    Moeller DA
    Ecology; 2006 Jun; 87(6):1510-22. PubMed ID: 16869427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
    Burnette TE; Eckhart VM
    Am J Bot; 2021 Feb; 108(2):309-319. PubMed ID: 33524185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotic Interactions Contribute to the Geographic Range Limit of an Annual Plant: Herbivory and Phenology Mediate Fitness beyond a Range Margin.
    Benning JW; Eckhart VM; Geber MA; Moeller DA
    Am Nat; 2019 Jun; 193(6):786-797. PubMed ID: 31094601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The opportunity for outcrossing varies across the geographic range of the primarily selfing Clarkia xantiana ssp. parviflora.
    Ruane LG; Mangum SM; Horner KM; Moeller DA
    Am J Bot; 2020 Aug; 107(8):1198-1207. PubMed ID: 32700343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.
    Moeller DA; Geber MA
    Evolution; 2005 Apr; 59(4):786-99. PubMed ID: 15926689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral and mating system divergence in secondary sympatry: testing an alternative hypothesis to reinforcement in Clarkia.
    Briscoe Runquist RD; Moeller DA
    Ann Bot; 2014 Jan; 113(2):223-35. PubMed ID: 24081279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographic variation in climate as a proxy for climate change: Forecasting evolutionary trajectories from species differentiation and genetic correlations.
    Schneider HE; Mazer SJ
    Am J Bot; 2016 Jan; 103(1):140-52. PubMed ID: 26744480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The joint evolution of mating system, floral traits and life history in Clarkia (Onagraceae): genetic constraints vs. independent evolution.
    Dudley LS; Mazer SJ; Galusky P
    J Evol Biol; 2007 Nov; 20(6):2200-18. PubMed ID: 17956384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation.
    Eckhart VM; Geber MA; Morris WF; Fabio ES; Tiffin P; Moeller DA
    Am Nat; 2011 Oct; 178 Suppl 1():S26-43. PubMed ID: 21956090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproductive assurance and the evolutionary ecology of self-pollination in Clarkia xantiana (Onagraceae).
    Fausto JA; Eckhart VM; Geber MA
    Am J Bot; 2001 Oct; 88(10):1794-800. PubMed ID: 21669612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floral traits influence the opportunity for selection among male gametophytes: independent and combined effects of style length and petal area.
    Mazer SJ; Chellew JP; Peach K
    Am J Bot; 2019 May; 106(5):744-753. PubMed ID: 31022312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mating system divergence affects the distribution of sequence diversity within and among populations of recently diverged subspecies of Clarkia xantiana (Onagraceae).
    Pettengill JB; Briscoe Runquist RD; Moeller DA
    Am J Bot; 2016 Jan; 103(1):99-109. PubMed ID: 26643885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life history, floral development, and mating system in Clarkia xantiana (Onagraceae): do floral and whole-plant rates of development evolve independently?
    Mazer SJ; Paz H; Bell MD
    Am J Bot; 2004 Dec; 91(12):2041-50. PubMed ID: 21652353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal variation in the pollen:ovule ratios of Clarkia (Onagraceae) taxa with contrasting mating systems: field populations.
    Delesalle VA; Mazer SJ; Paz H
    J Evol Biol; 2008 Jan; 21(1):310-323. PubMed ID: 18005114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maladaptation beyond a geographic range limit driven by antagonistic and mutualistic biotic interactions across an abiotic gradient.
    Benning JW; Moeller DA
    Evolution; 2019 Oct; 73(10):2044-2059. PubMed ID: 31435931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.