These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 15058990)
1. Hollow-fiber enzyme reactor operating under nonisothermal conditions. Diano N; Grano V; Rossi S; Bencivenga U; Portaccio M; Amato U; Carfora F; Lepore M; Gaeta FS; Mita DG Biotechnol Prog; 2004; 20(2):457-66. PubMed ID: 15058990 [TBL] [Abstract][Full Text] [Related]
2. Production of low-lactose milk by means of nonisothermal bioreactors. Grano V; Diano N; Rossi S; Portaccio M; Attanasio A; Cermola M; Spiezie R; Citton C; Mita DG Biotechnol Prog; 2004; 20(5):1393-401. PubMed ID: 15458322 [TBL] [Abstract][Full Text] [Related]
3. Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: laccase versus syringic acid as bioremediation model. Attanasio A; Diano N; Grano V; Sicuranza S; Rossi S; Bencivenga U; Fraconte L; Di Martino S; Canciglia P; Mita DG Biotechnol Prog; 2005; 21(3):806-15. PubMed ID: 15932260 [TBL] [Abstract][Full Text] [Related]
4. A novel packed-bed bioreactor operating under isothermal and non-isothermal conditions. De Maio A; El-Masry M; Di Martino S; Rossi S; Bencivenga U; Grano V; Diano N; Canciglia P; Mita DG Biotechnol Bioeng; 2004 May; 86(3):308-16. PubMed ID: 15083511 [TBL] [Abstract][Full Text] [Related]
5. Advantages in using immobilized thermophilic beta-glycosidase in nonisothermal bioreactors. Febbraio F; Portaccio M; Stellato S; Rossi S; Bencivenga U; Nucci R; Rossi M; Gaeta FS; Mita DG Biotechnol Bioeng; 1998 Jul; 59(1):108-15. PubMed ID: 10099320 [TBL] [Abstract][Full Text] [Related]
6. Advantages of using non-isothermal bioreactors for the enzymatic synthesis of antibiotics: the penicillin G acylase as enzyme model. Travascio P; Zito E; De Maio A; Schroën CG; Durante D; De Luca P; Bencivenga U; Mita DG Biotechnol Bioeng; 2002 Aug; 79(3):334-46. PubMed ID: 12115422 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and enzymatic adsorption model in a recirculation hollow-fibre bioreactor. Jurado E; Camacho F; Luzón G; Vicaria JM Bioprocess Biosyst Eng; 2005 Nov; 28(1):27-36. PubMed ID: 16160862 [TBL] [Abstract][Full Text] [Related]
8. Increase in beta-galactosidase activity in a non-isothermal bioreactor utilizing immobilized cells of Kluyveromyces fragilis: fundamentals and applications. Russo P; De Maio A; D'Acunzo A; Garofalo A; Bencivenga U; Rossi S; Annicchiarico R; Gaeta FS; Mita DG Res Microbiol; 1997; 148(3):271-81. PubMed ID: 9765807 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. Vasileva N; Ivanov Y; Damyanova S; Kostova I; Godjevargova T Int J Biol Macromol; 2016 Jan; 82():339-46. PubMed ID: 26586589 [TBL] [Abstract][Full Text] [Related]
10. Optimal covalent immobilization of glucose oxidase-containing liposomes for highly stable biocatalyst in bioreactor. Wang S; Yoshimoto M; Fukunaga K; Nakao K Biotechnol Bioeng; 2003 Aug; 83(4):444-53. PubMed ID: 12800138 [TBL] [Abstract][Full Text] [Related]
11. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design. Santos AM; Oliveira MG; Maugeri F Bioresour Technol; 2007 Nov; 98(16):3142-8. PubMed ID: 17254780 [TBL] [Abstract][Full Text] [Related]
12. Enzyme reaction engineering: effect of methanol on the synthesis of antibiotics catalyzed by immobilized penicillin G acylase under isothermal and non-isothermal conditions. Travascio P; Zito E; Portaccio M; Diano N; Grano V; Di Martino S; Bertolini T; Rossi S; Mita DG Biotechnol Prog; 2002; 18(5):975-85. PubMed ID: 12363348 [TBL] [Abstract][Full Text] [Related]
13. Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor. Giorno L; Li N; Drioli E Biotechnol Bioeng; 2003 Dec; 84(6):677-85. PubMed ID: 14595780 [TBL] [Abstract][Full Text] [Related]
14. Diffusion and chemical reaction rates with nonuniform enzyme distribution: an experimental approach. Ladero M; Santos A; García-Ochoa F Biotechnol Bioeng; 2001 Feb; 72(4):458-67. PubMed ID: 11180065 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol oxidation using hollow fiber dialyzer immobilized with cholesterol oxidase: preparation and properties. Lin CC; Yang MC Biotechnol Prog; 2003; 19(2):361-4. PubMed ID: 12675572 [TBL] [Abstract][Full Text] [Related]
16. Polymerization of glucans by enzymatically active membranes. Becker M; Provart N; Lehmann I; Ulbricht M; Hicke HG Biotechnol Prog; 2002; 18(5):964-8. PubMed ID: 12363346 [TBL] [Abstract][Full Text] [Related]
17. Production of tripeptide from gelatin using collagenase-immobilized porous hollow-fiber membrane. Fujita A; Kawakita H; Saito K; Sugita K; Tamada M; Sugo T Biotechnol Prog; 2003; 19(4):1365-7. PubMed ID: 12892503 [TBL] [Abstract][Full Text] [Related]
18. Cascade of bioreactors in series for conversion of 3-phospho-D-glycerate into D-ribulose-1,5-bisphosphate: kinetic parameters of enzymes and operation variables. Bhattacharya S; Schiavone M; Gomes J; Bhattacharya SK J Biotechnol; 2004 Jul; 111(2):203-17. PubMed ID: 15219406 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of β-galactosidase on modified polypropilene membranes. Vasileva N; Iotov V; Ivanov Y; Godjevargova T; Kotia N Int J Biol Macromol; 2012 Dec; 51(5):710-9. PubMed ID: 22922114 [TBL] [Abstract][Full Text] [Related]
20. High conversion in asymmetric hydrolysis during permeation through enzyme-multilayered porous hollow-fiber membranes. Kawai T; Nakamura M; Sugita K; Saito K; Sugo T Biotechnol Prog; 2001; 17(5):872-5. PubMed ID: 11587577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]