These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 15059005)
1. Hyperosmotic stress in murine hybridoma cells: effects on antibody transcription, translation, posttranslational processing, and the cell cycle. Sun Z; Zhou R; Liang S; McNeeley KM; Sharfstein ST Biotechnol Prog; 2004; 20(2):576-89. PubMed ID: 15059005 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide analysis of the transcriptional response of murine hybridomas to osmotic shock. Shen D; Sharfstein ST Biotechnol Bioeng; 2006 Jan; 93(1):132-45. PubMed ID: 16196057 [TBL] [Abstract][Full Text] [Related]
3. The effect of hyperosmotic pressure on antibody production and gene expression in the GS-NS0 cell line. Wu MH; Dimopoulos G; Mantalaris A; Varley J Biotechnol Appl Biochem; 2004 Aug; 40(Pt 1):41-6. PubMed ID: 15270706 [TBL] [Abstract][Full Text] [Related]
4. The production of monoclonal antibody in growth-arrested hybridomas cultivated in suspension and immobilized modes. Seifert DB; Phillips JA Biotechnol Prog; 1999; 15(4):655-66. PubMed ID: 10441357 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic responses to sodium chloride-induced osmotic stress: a study of industrial fed-batch CHO cell cultures. Shen D; Kiehl TR; Khattak SF; Li ZJ; He A; Kayne PS; Patel V; Neuhaus IM; Sharfstein ST Biotechnol Prog; 2010; 26(4):1104-15. PubMed ID: 20306541 [TBL] [Abstract][Full Text] [Related]
6. Computational approach for understanding and improving GS-NS0 antibody production under hyperosmotic conditions. Ho Y; Kiparissides A; Pistikopoulos EN; Mantalaris A J Biosci Bioeng; 2012 Jan; 113(1):88-98. PubMed ID: 22018734 [TBL] [Abstract][Full Text] [Related]
7. Effects of cloned gene dosage on the response of recombinant CHO cells to hyperosmotic pressure in regard to cell growth and antibody production. Ryu JS; Lee MS; Lee GM Biotechnol Prog; 2001; 17(6):993-9. PubMed ID: 11735431 [TBL] [Abstract][Full Text] [Related]
8. Development and analysis of a mathematical model for antibody-producing GS-NS0 cells under normal and hyperosmotic culture conditions. Ho Y; Varley J; Mantalaris A Biotechnol Prog; 2006; 22(6):1560-9. PubMed ID: 17137302 [TBL] [Abstract][Full Text] [Related]
9. Effects of abrupt and gradual osmotic stress on antibody production and content in hybridoma cells that differ in production kinetics. Reddy S; Miller WM Biotechnol Prog; 1994; 10(2):165-73. PubMed ID: 7764674 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture. Krampe B; Swiderek H; Al-Rubeai M Biotechnol Appl Biochem; 2008 Jul; 50(Pt 3):133-41. PubMed ID: 18302537 [TBL] [Abstract][Full Text] [Related]
11. Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Borth N; Mattanovich D; Kunert R; Katinger H Biotechnol Prog; 2005; 21(1):106-11. PubMed ID: 15903247 [TBL] [Abstract][Full Text] [Related]
12. Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Schmelzer AE; Miller WM Biotechnol Prog; 2002; 18(2):346-53. PubMed ID: 11934306 [TBL] [Abstract][Full Text] [Related]
13. Induction of CD40 expression and enhancement of monoclonal antibody production on murine B cell hybridomas by cross-linking of IgG receptors. Martín-López A; García-Camacho F; Belarbi el H; Martínez-Escobar S; Contreras-Gómez A; Molina-Grima E Biotechnol Prog; 2007; 23(2):452-7. PubMed ID: 17326658 [TBL] [Abstract][Full Text] [Related]
14. Intracellular pH monitoring as a tool for the study of hybridoma cell behavior in batch and continuous bioreactor cultures. Cherlet M; Marc A Biotechnol Prog; 1998; 14(4):626-38. PubMed ID: 9694686 [TBL] [Abstract][Full Text] [Related]
15. Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture. Omasa T; Furuichi K; Iemura T; Katakura Y; Kishimoto M; Suga K Bioprocess Biosyst Eng; 2010 Jan; 33(1):117-25. PubMed ID: 19590901 [TBL] [Abstract][Full Text] [Related]
16. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Cell density, viability, and cell-cycle distribution. Dalm MC; Cuijten SM; van Grunsven WM; Tramper J; Martens DE Biotechnol Bioeng; 2004 Dec; 88(5):547-57. PubMed ID: 15459904 [TBL] [Abstract][Full Text] [Related]
17. [Monoclonal antibody metabolism during the growth of hybridoma cells]. Morenkov OS; Mantsygin IuA; Lezhenev EI Tsitologiia; 1988 May; 30(5):611-5. PubMed ID: 2972097 [TBL] [Abstract][Full Text] [Related]
18. Effect of Bcl-2 overexpression on cell cycle and antibody productivity in chemostat cultures of myeloma NS0 cells. Tey BT; Al-Rubeai M J Biosci Bioeng; 2005 Sep; 100(3):303-10. PubMed ID: 16243281 [TBL] [Abstract][Full Text] [Related]
19. Effects of synchronization on CD40 expression and antibody production in hybridoma cells stimulated with anti-mIgG. Martín-López A; García-Camacho F; Contreras-Gómez A; Molina-Grima E Biotechnol Prog; 2007; 23(4):958-63. PubMed ID: 17571854 [TBL] [Abstract][Full Text] [Related]
20. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Senger RS; Karim MN Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]