These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1134 related articles for article (PubMed ID: 15059245)

  • 21. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regions of minimal structural variation among members of protein domain superfamilies: application to remote homology detection and modelling using distant relationships.
    Chakrabarti S; Sowdhamini R
    FEBS Lett; 2004 Jul; 569(1-3):31-6. PubMed ID: 15225604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proclass protein family database: new version with motif alignments.
    Wu CH; Shivakumar S
    Pac Symp Biocomput; 1998; ():719-30. PubMed ID: 9697225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis.
    Pearl F; Todd A; Sillitoe I; Dibley M; Redfern O; Lewis T; Bennett C; Marsden R; Grant A; Lee D; Akpor A; Maibaum M; Harrison A; Dallman T; Reeves G; Diboun I; Addou S; Lise S; Johnston C; Sillero A; Thornton J; Orengo C
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D247-51. PubMed ID: 15608188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Shannon entropy-based filter detects high- quality profile-profile alignments in searches for remote homologues.
    Capriotti E; Fariselli P; Rossi I; Casadio R
    Proteins; 2004 Feb; 54(2):351-60. PubMed ID: 14696197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HOMSTRAD: recent developments of the Homologous Protein Structure Alignment Database.
    Stebbings LA; Mizuguchi K
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D203-7. PubMed ID: 14681395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defining the fold space of membrane proteins: the CAMPS database.
    Martin-Galiano AJ; Frishman D
    Proteins; 2006 Sep; 64(4):906-22. PubMed ID: 16802318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The FSSP database of structurally aligned protein fold families.
    Holm L; Sander C
    Nucleic Acids Res; 1994 Sep; 22(17):3600-9. PubMed ID: 7937067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The SUPERFAMILY database in 2004: additions and improvements.
    Madera M; Vogel C; Kummerfeld SK; Chothia C; Gough J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D235-9. PubMed ID: 14681402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein three-dimensional structural databases: domains, structurally aligned homologues and superfamilies.
    Sowdhamini R; Burke DF; Deane C; Huang JF; Mizuguchi K; Nagarajaram HA; Overington JP; Srinivasan N; Steward RE; Blundell TL
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 1):1168-77. PubMed ID: 10089493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pairwise sequence alignment below the twilight zone.
    Blake JD; Cohen FE
    J Mol Biol; 2001 Mar; 307(2):721-35. PubMed ID: 11254392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation.
    Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ
    J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies.
    Mutt E; Rani SS; Sowdhamini R
    BioData Min; 2013 Nov; 6(1):20. PubMed ID: 24237883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of structure-based sequence alignment of automatic methods.
    Kim C; Lee B
    BMC Bioinformatics; 2007 Sep; 8():355. PubMed ID: 17883866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR
    J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SCOPEC: a database of protein catalytic domains.
    George RA; Spriggs RV; Thornton JM; Al-Lazikani B; Swindells MB
    Bioinformatics; 2004 Aug; 20 Suppl 1():i130-6. PubMed ID: 15262791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FSSA: a novel method for identifying functional signatures from structural alignments.
    Wang K; Samudrala R
    Bioinformatics; 2005 Jul; 21(13):2969-77. PubMed ID: 15860561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing strategies for improved superfamily recognition.
    Sillitoe I; Dibley M; Bray J; Addou S; Orengo C
    Protein Sci; 2005 Jul; 14(7):1800-10. PubMed ID: 15937274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
    Pei J; Grishin NV
    Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 57.