These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 15059666)
1. The mechanism of the type III antifreeze protein action: a computational study. Yang C; Sharp KA Biophys Chem; 2004 Apr; 109(1):137-48. PubMed ID: 15059666 [TBL] [Abstract][Full Text] [Related]
2. Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition. Yang C; Sharp KA Proteins; 2005 May; 59(2):266-74. PubMed ID: 15726609 [TBL] [Abstract][Full Text] [Related]
3. Analysis of thermal hysteresis protein hydration using the random network model. Gallagher KR; Sharp KA Biophys Chem; 2003 Sep; 105(2-3):195-209. PubMed ID: 14499892 [TBL] [Abstract][Full Text] [Related]
4. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
5. Formation of ice-like water structure on the surface of an antifreeze protein. Smolin N; Daggett V J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR on a type III antifreeze protein in the presence of ice. Siemer AB; McDermott AE J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456 [TBL] [Abstract][Full Text] [Related]
7. Understanding the mechanism of ice binding by type III antifreeze proteins. Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099 [TBL] [Abstract][Full Text] [Related]
8. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related]
9. Statistical and molecular dynamics studies of buried waters in globular proteins. Park S; Saven JG Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899 [TBL] [Abstract][Full Text] [Related]
10. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841 [TBL] [Abstract][Full Text] [Related]
11. Molecular recognition and binding of thermal hysteresis proteins to ice. Madura JD; Baran K; Wierzbicki A J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254 [TBL] [Abstract][Full Text] [Related]
12. Modified Langmuir isotherm for a two-domain adsorbate: derivation and application to antifreeze proteins. Can O; Holland NB J Colloid Interface Sci; 2009 Jan; 329(1):24-30. PubMed ID: 18945440 [TBL] [Abstract][Full Text] [Related]
13. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity. Grabowska J; Kuffel A; Zielkiewicz J J Chem Phys; 2016 Aug; 145(7):075101. PubMed ID: 27544127 [TBL] [Abstract][Full Text] [Related]
14. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. Garnham CP; Nishimiya Y; Tsuda S; Davies PL FEBS Lett; 2012 Nov; 586(21):3876-81. PubMed ID: 23017208 [TBL] [Abstract][Full Text] [Related]
15. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Nutt DR; Smith JC J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821 [TBL] [Abstract][Full Text] [Related]
16. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. Howard EI; Blakeley MP; Haertlein M; Petit-Haertlein I; Mitschler A; Fisher SJ; Cousido-Siah A; Salvay AG; Popov A; Muller-Dieckmann C; Petrova T; Podjarny A J Mol Recognit; 2011; 24(4):724-32. PubMed ID: 21472814 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for the binding of a globular antifreeze protein to ice. Jia Z; DeLuca CI; Chao H; Davies PL Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883 [TBL] [Abstract][Full Text] [Related]
18. A new angle on heat capacity changes in hydrophobic solvation. Gallagher KR; Sharp KA J Am Chem Soc; 2003 Aug; 125(32):9853-60. PubMed ID: 12904053 [TBL] [Abstract][Full Text] [Related]
19. Two domains of RD3 antifreeze protein diffuse independently. Holland NB; Nishimiya Y; Tsuda S; Sönnichsen FD Biochemistry; 2008 Jun; 47(22):5935-41. PubMed ID: 18459801 [TBL] [Abstract][Full Text] [Related]
20. Water structure and dynamics in the hydration layer of a type III anti-freeze protein. Brotzakis ZF; Voets IK; Bakker HJ; Bolhuis PG Phys Chem Chem Phys; 2018 Mar; 20(10):6996-7006. PubMed ID: 29468240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]