BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15059880)

  • 41. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease.
    Shams M; Owczarczak B; Manderscheid-Kern P; Bellnier DA; Gollnick SO
    Cancer Immunol Immunother; 2015 Mar; 64(3):287-97. PubMed ID: 25384911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced apoptotic effects by downregulating Mcl-1: evidence for the improvement of photodynamic therapy with Celecoxib.
    Song J; Chen Q; Xing D
    Exp Cell Res; 2013 Jun; 319(10):1491-504. PubMed ID: 23524145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Induction of prosurvival molecules during treatment: rethinking therapy options for photodynamic therapy.
    Gomer CJ
    J Natl Compr Canc Netw; 2012 Oct; 10 Suppl 2():S35-9. PubMed ID: 23055213
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response.
    Korbelik M; Sun J; Cecic I
    Cancer Res; 2005 Feb; 65(3):1018-26. PubMed ID: 15705903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A combined modality of carboplatin and photodynamic therapy suppresses epithelial-mesenchymal transition and matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in HEp-2 human laryngeal cancer cells via ROS-mediated inhibition of MEK/ERK signalling pathway.
    Mao W; Sun Y; Zhang H; Cao L; Wang J; He P
    Lasers Med Sci; 2016 Nov; 31(8):1697-1705. PubMed ID: 27481258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tumor specific response to photodynamic therapy.
    Stern SJ; Craig J; Flock S; Montague D; Waner M; Jacques S
    Lasers Surg Med; 1993; 13(4):434-9. PubMed ID: 8366743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subclinical photodynamic therapy treatment modifies the brain microenvironment and promotes glioma growth.
    deCarvalho AC; Zhang X; Roberts C; Jiang F; Kalkanis SN; Hong X; Lu M; Chopp M
    Glia; 2007 Aug; 55(10):1053-60. PubMed ID: 17551928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sulforaphene Enhances The Efficacy of Photodynamic Therapy In Anaplastic Thyroid Cancer Through Ras/RAF/MEK/ERK Pathway Suppression.
    Chatterjee S; Rhee Y; Chung PS; Ge RF; Ahn JC
    J Photochem Photobiol B; 2018 Feb; 179():46-53. PubMed ID: 29331658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deposition of complement proteins on cells treated by photodynamic therapy in vitro.
    Cecic I; Korbelik M
    J Environ Pathol Toxicol Oncol; 2006; 25(1-2):189-203. PubMed ID: 16566717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment.
    Zucker S; Cao J; Chen WT
    Oncogene; 2000 Dec; 19(56):6642-50. PubMed ID: 11426650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anti-tumor effect of PDT using Photofrin in a mouse angiosarcoma model.
    Jin I; Yuji M; Yoshinori N; Makoto K; Mikio M
    Arch Dermatol Res; 2008 Apr; 300(4):161-6. PubMed ID: 18080130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hyperthermic potentiation of photodynamic therapy employing Photofrin I and II: comparison of results using three animal tumor models.
    Waldow SM; Henderson BW; Dougherty TJ
    Lasers Surg Med; 1987; 7(1):12-22. PubMed ID: 2952850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment.
    Chantrain CF; Shimada H; Jodele S; Groshen S; Ye W; Shalinsky DR; Werb Z; Coussens LM; DeClerck YA
    Cancer Res; 2004 Mar; 64(5):1675-86. PubMed ID: 14996727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of multiple photosensitizers and wavelengths during photodynamic therapy: a new approach to enhance tumor eradication.
    Nelson JS; Liaw LH; Lahlum RA; Cooper PL; Berns MW
    J Natl Cancer Inst; 1990 May; 82(10):868-73. PubMed ID: 2139704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model.
    Engbrecht BW; Menon C; Kachur AV; Hahn SM; Fraker DL
    Cancer Res; 1999 Sep; 59(17):4334-42. PubMed ID: 10485481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Breast cancer resistant protein (BCRP) is a molecular determinant of the outcome of photodynamic therapy (PDT) for centrally located early lung cancer.
    Usuda J; Tsunoda Y; Ichinose S; Ishizumi T; Ohtani K; Maehara S; Ono S; Tsutsui H; Ohira T; Okunaka T; Furukawa K; Sugimoto Y; Kato H; Ikeda N
    Lung Cancer; 2010 Feb; 67(2):198-204. PubMed ID: 19477032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of ephrin-A1 on resistance to Photofrin-mediated photodynamic therapy in esophageal squamous cell carcinoma cells.
    Yang PW; Chiang TH; Hsieh CY; Huang YC; Wong LF; Hung MC; Tsai JC; Lee JM
    Lasers Med Sci; 2015 Dec; 30(9):2353-61. PubMed ID: 26450615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nimotuzumab increases the anti-tumor effect of photodynamic therapy in an oral tumor model.
    Bhuvaneswari R; Ng QF; Thong PS; Soo KC
    Oncotarget; 2015 May; 6(15):13487-505. PubMed ID: 25918252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preclinical Study of Antineoplastic Sinoporphyrin Sodium-PDT via In Vitro and In Vivo Models.
    Shi R; Li C; Jiang Z; Li W; Wang A; Wei J
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28085075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo molecular target assessment of matrix metalloproteinase inhibition.
    Bremer C; Tung CH; Weissleder R
    Nat Med; 2001 Jun; 7(6):743-8. PubMed ID: 11385514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.