BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15060139)

  • 1. A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport.
    Lutsenko EA; Carcamo JM; Golde DW
    Mol Cell Biol; 2004 Apr; 24(8):3150-6. PubMed ID: 15060139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells.
    Maulén NP; Henríquez EA; Kempe S; Cárcamo JG; Schmid-Kotsas A; Bachem M; Grünert A; Bustamante ME; Nualart F; Vera JC
    J Biol Chem; 2003 Mar; 278(11):9035-41. PubMed ID: 12381735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbic acid depletion enhances expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice.
    Amano A; Aigaki T; Maruyama N; Ishigami A
    Arch Biochem Biophys; 2010 Apr; 496(1):38-44. PubMed ID: 20122894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells.
    García Mde L; Salazar K; Millán C; Rodríguez F; Montecinos H; Caprile T; Silva C; Cortes C; Reinicke K; Vera JC; Aguayo LG; Olate J; Molina B; Nualart F
    Glia; 2005 Apr; 50(1):32-47. PubMed ID: 15625716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin C transport systems of mammalian cells.
    Liang WJ; Johnson D; Jarvis SM
    Mol Membr Biol; 2001; 18(1):87-95. PubMed ID: 11396616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular identification and functional characterization of the vitamin C transporters expressed by Sertoli cells.
    Angulo C; Castro MA; Rivas CI; Segretain D; Maldonado R; Yañez AJ; Slebe JC; Vera JC; Concha II
    J Cell Physiol; 2008 Dec; 217(3):708-16. PubMed ID: 18668520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent vitamin C transporter isoforms in skin: Distribution, kinetics, and effect of UVB-induced oxidative stress.
    Steiling H; Longet K; Moodycliffe A; Mansourian R; Bertschy E; Smola H; Mauch C; Williamson G
    Free Radic Biol Med; 2007 Sep; 43(5):752-62. PubMed ID: 17664139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways.
    Corpe CP; Lee JH; Kwon O; Eck P; Narayanan J; Kirk KL; Levine M
    J Biol Chem; 2005 Feb; 280(7):5211-20. PubMed ID: 15590689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender and sodium-ascorbate transporter isoforms determine ascorbate concentrations in mice.
    Kuo SM; MacLean ME; McCormick K; Wilson JX
    J Nutr; 2004 Sep; 134(9):2216-21. PubMed ID: 15333707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes.
    Michels AJ; Joisher N; Hagen TM
    Arch Biochem Biophys; 2003 Feb; 410(1):112-20. PubMed ID: 12559983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin C transport in oxidized form across the rat blood-retinal barrier.
    Hosoya K; Minamizono A; Katayama K; Terasaki T; Tomi M
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1232-9. PubMed ID: 15037592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent vitamin C transporter 2 (SVCT2) is necessary for the uptake of L-ascorbic acid into Schwann cells.
    Gess B; Lohmann C; Halfter H; Young P
    Glia; 2010 Feb; 58(3):287-99. PubMed ID: 19672970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized localization of vitamin C transporters, SVCT1 and SVCT2, in epithelial cells.
    Boyer JC; Campbell CE; Sigurdson WJ; Kuo SM
    Biochem Biophys Res Commun; 2005 Aug; 334(1):150-6. PubMed ID: 15993839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of a sodium-dependent vitamin C transporter (SVCT) in MDCK-MDR1 cells and mechanism of ascorbate uptake.
    Luo S; Wang Z; Kansara V; Pal D; Mitra AK
    Int J Pharm; 2008 Jun; 358(1-2):168-76. PubMed ID: 18417304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin C transporters.
    Rivas CI; Zúñiga FA; Salas-Burgos A; Mardones L; Ormazabal V; Vera JC
    J Physiol Biochem; 2008 Dec; 64(4):357-75. PubMed ID: 19391462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrocyte transport and concentration of ascorbic acid is mediated by SVCT2.
    McNulty AL; Vail TP; Kraus VB
    Biochim Biophys Acta; 2005 Jun; 1712(2):212-21. PubMed ID: 15921655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human choroid plexus papilloma cells efficiently transport glucose and vitamin C.
    Ulloa V; García-Robles M; Martínez F; Salazar K; Reinicke K; Pérez F; Godoy DF; Godoy AS; Nualart F
    J Neurochem; 2013 Nov; 127(3):403-14. PubMed ID: 23647458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchal contribution of N- and C-terminal sequences to the differential localization of homologous sodium-dependent vitamin C transporters, SVCT1 and SVCT2, in epithelial cells.
    Varma S; Sobey K; Campbell CE; Kuo SM
    Biochemistry; 2009 Apr; 48(13):2969-80. PubMed ID: 19216494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Glycosylation is required for Na+-dependent vitamin C transporter functionality.
    Subramanian VS; Marchant JS; Reidling JC; Said HM
    Biochem Biophys Res Commun; 2008 Sep; 374(1):123-7. PubMed ID: 18619416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.