These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 15060606)
1. M chromosome of the wild silkworm, Bombyx mandarina (n = 27), corresponds to two chromosomes in the domesticated silkworm, Bombyx mori (n = 28). Banno Y; Nakamura T; Nagashima E; Fujii H; Doira H Genome; 2004 Feb; 47(1):96-101. PubMed ID: 15060606 [TBL] [Abstract][Full Text] [Related]
2. The effect of W chromosome origin on sex-chromosome pairing in ZZWW tetraploid females of the domesticated silkworm, Bombyx mori, and the congenic wild silkworm, Bombyx mandarina. Tanaka N; Yokoyama T; Abe H; Ninagi O; Oshiki T Genetica; 2002; 114(1):89-94. PubMed ID: 11990764 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide diversity and selection signature in the domesticated silkworm, Bombyx mori, and wild silkworm, Bombyx mandarina. Guo Y; Shen YH; Sun W; Kishino H; Xiang ZH; Zhang Z J Insect Sci; 2011; 11():155. PubMed ID: 22239062 [TBL] [Abstract][Full Text] [Related]
4. Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Yu HS; Shen YH; Yuan GX; Hu YG; Xu HE; Xiang ZH; Zhang Z Mol Biol Evol; 2011 Jun; 28(6):1785-99. PubMed ID: 21212153 [TBL] [Abstract][Full Text] [Related]
5. Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Li A; Zhao Q; Tang S; Zhang Z; Pan S; Shen G J Genet; 2005 Aug; 84(2):137-42. PubMed ID: 16131713 [TBL] [Abstract][Full Text] [Related]
6. Comparative mitochondrial genomes provide new insights into the true wild progenitor and origin of domestic silkworm Bombyx mori. Chen DB; Zhang RS; Bian HX; Li Q; Xia RX; Li YP; Liu YQ; Lu C Int J Biol Macromol; 2019 Jun; 131():176-183. PubMed ID: 30836184 [TBL] [Abstract][Full Text] [Related]
7. Integration of molecular and classical linkage groups of the silkworm, Bombyx mori (n = 28). Yasukochi Y; Banno Y; Yamamoto K; Goldsmith MR; Fujii H Genome; 2005 Aug; 48(4):626-9. PubMed ID: 16094430 [TBL] [Abstract][Full Text] [Related]
8. Allele-specific knockouts reveal a role for apontic-like in the evolutionary loss of larval melanin pigmentation in the domesticated silkworm, Bombyx mori. Tomihara K; Andolfatto P; Kiuchi T Insect Mol Biol; 2022 Dec; 31(6):701-710. PubMed ID: 35752945 [TBL] [Abstract][Full Text] [Related]
9. The Bombyx mori karyotype and the assignment of linkage groups. Yoshido A; Bando H; Yasukochi Y; Sahara K Genetics; 2005 Jun; 170(2):675-85. PubMed ID: 15802516 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Abe H; Kanehara M; Terada T; Ohbayashi F; Shimada T; Kawai S; Suzuki M; Sugasaki T; Oshiki T Genes Genet Syst; 1998 Aug; 73(4):243-54. PubMed ID: 9880922 [TBL] [Abstract][Full Text] [Related]
11. Interspecies linkage analysis of mo, a Bombyx mori locus associated with mosaicism and gynandromorphism. Fujii T; Abe H; Yamamoto K; Katsuma S; Shimada T Genetica; 2011 Oct; 139(10):1323-9. PubMed ID: 22350563 [TBL] [Abstract][Full Text] [Related]
12. Conserved synteny of genes between chromosome 15 of Bombyx mori and a chromosome of Manduca sexta shown by five-color BAC-FISH. Sahara K; Yoshido A; Marec F; Fuková I; Zhang HB; Wu CC; Goldsmith MR; Yasukochi Y Genome; 2007 Nov; 50(11):1061-5. PubMed ID: 18059551 [TBL] [Abstract][Full Text] [Related]
13. Little gene flow between domestic silkmoth Bombyx mori and its wild relative Bombyx mandarina in Japan, and possible artificial selection on the CAD gene of B. mori. Yukuhiro K; Sezutsu H; Tamura T; Kosegawa E; Iwata K; Ajimura M; Gu SH; Wang M; Xia Q; Mita K; Kiuchi M Genes Genet Syst; 2012; 87(5):331-40. PubMed ID: 23412635 [TBL] [Abstract][Full Text] [Related]
14. cDNA and deduced amino acid sequences of apolipophorin-IIIs from Bombyx mori and Bombyx mandarina. Yamauchi Y; Hoeffer C; Yamamoto A; Takeda H; Ishihara R; Maekawa H; Sato R; Su-Il S; Sumida M; Wells MA; Tsuchida K Arch Insect Biochem Physiol; 2000 Jan; 43(1):16-21. PubMed ID: 10613959 [TBL] [Abstract][Full Text] [Related]
15. Phylogeographic Relationships among Kim MJ; Park JS; Kim H; Kim SR; Kim SW; Kim KY; Kwak W; Kim I Biology (Basel); 2022 Jan; 11(1):. PubMed ID: 35053066 [TBL] [Abstract][Full Text] [Related]
16. Cytochrome P450 monooxygenase genes in the wild silkworm, Wan L; Zhou A; Xiao W; Zou B; Jiang Y; Xiao J; Deng C; Zhang Y; PeerJ; 2021; 9():e10818. PubMed ID: 33604192 [TBL] [Abstract][Full Text] [Related]
17. Morphological and electrophysiological differences in tarsal chemosensilla between the wild silkmoth Bombyx mandarina and the domesticated species Bombyx mori. Takai H; Asaoka K; Ishizuna F; Kiuchi T; Katsuma S; Shimada T Arthropod Struct Dev; 2018 May; 47(3):238-247. PubMed ID: 29518525 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina. Li YP; Song W; Shi SL; Liu YQ; Pan MH; Dai FY; Lu C; Xiang ZH Genet Mol Biol; 2010 Jan; 33(1):186-9. PubMed ID: 21637625 [TBL] [Abstract][Full Text] [Related]
20. Geographic dimorphism of the wild silkworm, Bombyx mandarina, in the chromosome number and the occurrence of a retroposon-like insertion in the arylphorin gene. Nakamura T; Banno Y; Nakada T; Nho SK; Xü MK; Ueda K; Kawarabata T; Kawaguchi Y; Koga K Genome; 1999 Dec; 42(6):1117-20. PubMed ID: 10659778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]