BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 1506132)

  • 1. Attenuation of hypoxic response in cerebral microcirculation following deprenyl.
    Höper J; Kozniewska E
    Int J Microcirc Clin Exp; 1992 Aug; 11(3):287-95. PubMed ID: 1506132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebrocortical microcirculation in different stages of hypoxic hypoxia.
    Kozniewska E; Weller L; Höper J; Harrison DK; Kessler M
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):464-70. PubMed ID: 3611205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between arterial po2 and cerebral blood flow in hypoxic hypoxia.
    Borgström L; Jóhannsson H; Siesjö BK
    Acta Physiol Scand; 1975 Mar; 93(3):423-32. PubMed ID: 1146584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of reduced oxyhemoglobin affinity on cerebrovascular response to hypoxic hypoxia.
    Koehler RC; Traystman RJ; Jones MD
    Am J Physiol; 1986 Oct; 251(4 Pt 2):H756-63. PubMed ID: 3766753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (-)Deprenyl-N-oxide, a (-)deprenyl metabolite, is cytoprotective after hypoxic injury in PC12 cells, or after transient brain ischemia in gerbils.
    Szilágyi G; Simon L; Wappler E; Magyar K; Nagy Z
    J Neurol Sci; 2009 Aug; 283(1-2):182-6. PubMed ID: 19332347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen tension, oxygen metabolism, and microcirculation in vasogenic brain edema.
    Gaab MR; Poch B; Heller V
    Adv Neurol; 1990; 52():247-56. PubMed ID: 2396519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of theophylline treatment on the functional hyperaemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E
    Acta Physiol Hung; 1986; 68(2):183-97. PubMed ID: 3825555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the endogenous nitric oxide in the vasodilatory tone and CO2 responsiveness of the rostral ventrolateral medulla microcirculation in the rat.
    Wołk R; Nowicki D; Siemińska J; Trzebski A
    J Physiol Pharmacol; 1995 Jun; 46(2):127-39. PubMed ID: 7670122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of nitric oxide in the regulation of cerebral blood flow in the ovine foetus.
    McCrabb GJ; Harding R
    Clin Exp Pharmacol Physiol; 1996; 23(10-11):855-60. PubMed ID: 8911725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of carotid body stimulation on oxygen tension and microcirculation of various organs of the cat.
    Althoff M; Acker H
    Int J Microcirc Clin Exp; 1985; 4(4):379-95. PubMed ID: 4086192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow and oxygen consumption in the rat in hypoxic hypoxia.
    Jóhannsson H; Siesjö BK
    Acta Physiol Scand; 1975 Feb; 93(2):269-76. PubMed ID: 238358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of piracetam on the local cortical cerebral blood flow in cats.
    Vlahov V; Nikolova M; Nikolov R
    Arch Int Pharmacodyn Ther; 1980 Jan; 243(1):103-10. PubMed ID: 6770768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deprenyl (selegiline), a selective MAO-B inhibitor with active metabolites; effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons.
    Engberg G; Elebring T; Nissbrandt H
    J Pharmacol Exp Ther; 1991 Nov; 259(2):841-7. PubMed ID: 1658311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of microflow and local PO2 of the brain cortex during and after direct electrical stimulation. A contribution to the problem of metabolic regulation of microcirculation in the brain.
    Leniger-Follert E; Lübbers DW
    Pflugers Arch; 1976 Oct; 366(1):39-44. PubMed ID: 988570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic hyperglycemic diabetes in the rat is associated with a selective impairment of cerebral vasodilatory responses.
    Pelligrino DA; Albrecht RF
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):667-77. PubMed ID: 2050755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical sympathectomy and cerebral microvascular and blood flow responses to hypocapnic hypoxia.
    Kissen I; Weiss HR
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H460-7. PubMed ID: 2492769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic transformation plays a primary role in the psychostimulant-like discriminative-stimulus effects of selegiline [(R)-(-)-deprenyl].
    Yasar S; Justinova Z; Lee SH; Stefanski R; Goldberg SR; Tanda G
    J Pharmacol Exp Ther; 2006 Apr; 317(1):387-94. PubMed ID: 16352699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cerebral hemodynamics in chronic hypoxic hypoxia].
    Aritake K; Mayer HM; Fritschka E; Cervós-Navarro J; Takakura K
    No To Shinkei; 1986 Apr; 38(4):363-9. PubMed ID: 3718781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple, small dose administration of (-)deprenyl enhances catecholaminergic activity and diminishes serotoninergic activity in the brain and these effects are unrelated to MAO-B inhibition.
    Knoll J; Miklya I
    Arch Int Pharmacodyn Ther; 1994; 328(1):1-15. PubMed ID: 7893186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency.
    Yoshida T; Yamada Y; Yamamoto T; Kuroiwa Y
    Xenobiotica; 1986 Feb; 16(2):129-36. PubMed ID: 3083608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.