These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15062085)

  • 1. Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose.
    Allouch J; Helbert W; Henrissat B; Czjzek M
    Structure; 2004 Apr; 12(4):623-32. PubMed ID: 15062085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asp271 is critical for substrate interaction with the surface binding site in β-agarase a from Zobellia galactanivorans.
    Wilkens C; Tiwari MK; Webb H; Jam M; Czjzek M; Svensson B
    Proteins; 2019 Jan; 87(1):34-40. PubMed ID: 30315603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the agarase system of a multiple carbohydrate degrading marine bacterium.
    Whitehead LA; Stosz SK; Weiner RM
    Cytobios; 2001; 106 Suppl 1():99-117. PubMed ID: 11534834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp.
    Lu X; Chu Y; Wu Q; Gu Y; Han F; Yu W
    Biotechnol Lett; 2009 Oct; 31(10):1565-70. PubMed ID: 19504047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.
    Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J
    J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans.
    Pluvinage B; Hehemann JH; Boraston AB
    J Biol Chem; 2013 Sep; 288(39):28078-88. PubMed ID: 23921382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases.
    Mark P; Baumann MJ; Eklöf JM; Gullfot F; Michel G; Kallas AM; Teeri TT; Brumer H; Czjzek M
    Proteins; 2009 Jun; 75(4):820-36. PubMed ID: 19004021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.
    Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U
    J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04.
    Han W; Cheng Y; Wang D; Wang S; Liu H; Gu J; Wu Z; Li F
    Appl Environ Microbiol; 2016 Aug; 82(16):4944-54. PubMed ID: 27260364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational and structural studies of the active-site residues in truncated Fibrobacter succinogenes1,3-1,4-beta-D-glucanase.
    Tsai LC; Huang HC; Hsiao CH; Chiang YN; Shyur LF; Lin YS; Lee SH
    Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1259-66. PubMed ID: 19018102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product.
    De Vos D; Collins T; Nerinckx W; Savvides SN; Claeyssens M; Gerday C; Feller G; Van Beeumen J
    Biochemistry; 2006 Apr; 45(15):4797-807. PubMed ID: 16605248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours.
    Jam M; Flament D; Allouch J; Potin P; Thion L; Kloareg B; Czjzek M; Helbert W; Michel G; Barbeyron T
    Biochem J; 2005 Feb; 385(Pt 3):703-13. PubMed ID: 15456406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-dimensional structures of two beta-agarases.
    Allouch J; Jam M; Helbert W; Barbeyron T; Kloareg B; Henrissat B; Czjzek M
    J Biol Chem; 2003 Nov; 278(47):47171-80. PubMed ID: 12970344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family.
    Ficko-Blean E; Duffieux D; Rebuffet É; Larocque R; Groisillier A; Michel G; Czjzek M
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):209-23. PubMed ID: 25664732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of the alpha-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B.
    Potin P; Richard C; Rochas C; Kloareg B
    Eur J Biochem; 1993 Jun; 214(2):599-607. PubMed ID: 8513809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate.
    Zhang W; Xu J; Liu D; Liu H; Lu X; Yu W
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2203-2212. PubMed ID: 29353307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of endo-beta-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products.
    Ryttersgaard C; Le Nours J; Lo Leggio L; Jørgensen CT; Christensen LL; Bjørnvad M; Larsen S
    J Mol Biol; 2004 Jul; 341(1):107-17. PubMed ID: 15312766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbifer-like isolate.
    Ohta Y; Hatada Y; Nogi Y; Li Z; Ito S; Horikoshi K
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):266-75. PubMed ID: 15490156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition.
    Nagem RA; Rojas AL; Golubev AM; Korneeva OS; Eneyskaya EV; Kulminskaya AA; Neustroev KN; Polikarpov I
    J Mol Biol; 2004 Nov; 344(2):471-80. PubMed ID: 15522299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.