These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 15062782)
1. Modeling non-heme iron proteins. He C; Mishina Y Curr Opin Chem Biol; 2004 Apr; 8(2):201-8. PubMed ID: 15062782 [TBL] [Abstract][Full Text] [Related]
2. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Nam W Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792 [TBL] [Abstract][Full Text] [Related]
3. Dioxygen activation at non-heme iron: insights from rapid kinetic studies. Korendovych IV; Kryatov SV; Rybak-Akimova EV Acc Chem Res; 2007 Jul; 40(7):510-21. PubMed ID: 17521158 [TBL] [Abstract][Full Text] [Related]
4. Oxidative N-dealkylation reactions by oxoiron(IV) complexes of nonheme and heme ligands. Nehru K; Seo MS; Kim J; Nam W Inorg Chem; 2007 Jan; 46(1):293-8. PubMed ID: 17198439 [TBL] [Abstract][Full Text] [Related]
5. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
6. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant. Park MJ; Lee J; Suh Y; Kim J; Nam W J Am Chem Soc; 2006 Mar; 128(8):2630-4. PubMed ID: 16492048 [TBL] [Abstract][Full Text] [Related]
7. Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(II) complex. Kim SO; Sastri CV; Seo MS; Kim J; Nam W J Am Chem Soc; 2005 Mar; 127(12):4178-9. PubMed ID: 15783193 [TBL] [Abstract][Full Text] [Related]
9. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Bruijnincx PC; van Koten G; Klein Gebbink RJ Chem Soc Rev; 2008 Dec; 37(12):2716-44. PubMed ID: 19020684 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and quantum chemical characterization of the electronic structure and bonding in a non-heme FeIV[double bond]O complex. Decker A; Rohde JU; Que L; Solomon EI J Am Chem Soc; 2004 May; 126(17):5378-9. PubMed ID: 15113207 [TBL] [Abstract][Full Text] [Related]
11. A novel platform for modeling oxidative catalysis in non-heme iron oxygenases with unprecedented efficiency. Company A; Gómez L; Fontrodona X; Ribas X; Costas M Chemistry; 2008; 14(19):5727-31. PubMed ID: 18481345 [No Abstract] [Full Text] [Related]
12. Modeling the syn disposition of nitrogen donors at the active sites of carboxylate-bridged diiron enzymes. Enforcing dinuclearity and kinetic stability with a 1,2-diethynylbenzene-based ligand. Kuzelka J; Farrell JR; Lippard SJ Inorg Chem; 2003 Dec; 42(26):8652-62. PubMed ID: 14686842 [TBL] [Abstract][Full Text] [Related]
13. High-valent iron in chemical and biological oxidations. Groves JT J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297 [TBL] [Abstract][Full Text] [Related]
14. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Decker A; Solomon EI Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799 [TBL] [Abstract][Full Text] [Related]
15. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
16. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases. Straganz GD; Nidetzky B Chembiochem; 2006 Oct; 7(10):1536-48. PubMed ID: 16858718 [TBL] [Abstract][Full Text] [Related]
17. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases. Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307 [TBL] [Abstract][Full Text] [Related]
18. Structural and spectroscopic characterization of (mu-hydroxo or mu-oxo)(mu-peroxo)diiron(III) complexes: models for peroxo intermediates of non-heme diiron proteins. Zhang X; Furutachi H; Fujinami S; Nagatomo S; Maeda Y; Watanabe Y; Kitagawa T; Suzuki M J Am Chem Soc; 2005 Jan; 127(3):826-7. PubMed ID: 15656607 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy. Rohde JU; Torelli S; Shan X; Lim MH; Klinker EJ; Kaizer J; Chen K; Nam W; Que L J Am Chem Soc; 2004 Dec; 126(51):16750-61. PubMed ID: 15612713 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and oxidation of carboxylate-bridged diiron(II) complexes with substrates tethered to primary alkyl amine ligands. Carson EC; Lippard SJ J Inorg Biochem; 2006 May; 100(5-6):1109-17. PubMed ID: 16439023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]