These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15063111)

  • 61. Substitutions of 169Lys and 173Thr in nonstructural protein 1 influence the infectivity and pathogenicity of XJ-160 virus.
    Zhu WY; Yang YL; Fu SH; Wang LH; Zai YG; Tang Q; Liang GD
    Arch Virol; 2009; 154(2):245-53. PubMed ID: 19118404
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biochemical studies of the maturation of the small Sindbis virus glycoprotein E3.
    Mayne JT; Rice CM; Strauss EG; Hunkapiller MW; Strauss JH
    Virology; 1984 Apr; 134(2):338-57. PubMed ID: 6443592
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mutating conserved cysteines in the alphavirus e2 glycoprotein causes virus-specific assembly defects.
    Snyder AJ; Sokoloski KJ; Mukhopadhyay S
    J Virol; 2012 Mar; 86(6):3100-11. PubMed ID: 22238319
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dimerization of glycoprotein E(rns) of classical swine fever virus is not essential for viral replication and infection.
    van Gennip HG; Hesselink AT; Moormann RJ; Hulst MM
    Arch Virol; 2005 Nov; 150(11):2271-86. PubMed ID: 15986175
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein.
    Chien YJ; Chen WJ; Hsu WL; Chiou SS
    Virology; 2008 Sep; 379(1):143-51. PubMed ID: 18640695
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain.
    Oliveira FO; Alves CR; Calvet CM; Toma L; Bouças RI; Nader HB; Castro Côrtes LM; Krieger MA; Meirelles Mde N; Souza Pereira MC
    Microb Pathog; 2008 Apr; 44(4):329-38. PubMed ID: 18037261
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Infection of neonatal mice with sindbis virus results in a systemic inflammatory response syndrome.
    Klimstra WB; Ryman KD; Bernard KA; Nguyen KB; Biron CA; Johnston RE
    J Virol; 1999 Dec; 73(12):10387-98. PubMed ID: 10559357
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structural localization of the E3 glycoprotein in attenuated Sindbis virus mutants.
    Paredes AM; Heidner H; Thuman-Commike P; Prasad BV; Johnston RE; Chiu W
    J Virol; 1998 Feb; 72(2):1534-41. PubMed ID: 9445057
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Envelope antigens of Sindbis virus in cells infected with temperature-sensitive mutants.
    Bell JW; Waite MR
    J Virol; 1977 Feb; 21(2):788-91. PubMed ID: 319257
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An amino acid substitution in the coding region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an attachment moiety.
    Heil ML; Albee A; Strauss JH; Kuhn RJ
    J Virol; 2001 Jul; 75(14):6303-9. PubMed ID: 11413296
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Targeting Sindbis virus-based vectors to Fc receptor-positive cell types.
    Klimstra WB; Williams JC; Ryman KD; Heidner HW
    Virology; 2005 Jul; 338(1):9-21. PubMed ID: 15922395
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vivo processing and isolation of furin protease-sensitive alphavirus glycoproteins: a new technique for producing mutations in virus assembly.
    Nelson S; Hernandez R; Ferreira D; Brown DT
    Virology; 2005 Feb; 332(2):629-39. PubMed ID: 15680428
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An arthropod enzyme, Dfurin1, and a vertebrate furin homolog display distinct cleavage site sequence preferences for a shared viral proprotein substrate.
    Cano-Monreal GL; Williams JC; Heidner HW
    J Insect Sci; 2010; 10():29. PubMed ID: 20578951
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Envelopments of Sindbis virus: synthesis and organization of proteins in cells infected with wild type and maturation-defective mutants.
    Smith JF; Brown DT
    J Virol; 1977 Jun; 22(3):662-78. PubMed ID: 875134
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulation of Semliki Forest virus RNA replication: a model for the control of alphavirus pathogenesis in invertebrate hosts.
    Kim KH; Rümenapf T; Strauss EG; Strauss JH
    Virology; 2004 May; 323(1):153-63. PubMed ID: 15165827
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins.
    Mulvey M; Brown DT
    J Virol; 1995 Mar; 69(3):1621-7. PubMed ID: 7853497
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses.
    Lee E; Hall RA; Lobigs M
    J Virol; 2004 Aug; 78(15):8271-80. PubMed ID: 15254199
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus.
    Zhu W; Wang L; Yang Y; Jia J; Fu S; Feng Y; He Y; Li JP; Liang G
    PLoS One; 2010 Mar; 5(3):e9656. PubMed ID: 20300181
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biosynthesis, membrane translocation, and surface expression of Sindbis virus E1 glycoprotein.
    Migliaccio G; Pascale MC; Leone A; Bonatti S
    Exp Cell Res; 1989 Nov; 185(1):203-16. PubMed ID: 2806407
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulators of apoptosis on the road to persistent alphavirus infection.
    Griffin DE; Hardwick JM
    Annu Rev Microbiol; 1997; 51():565-92. PubMed ID: 9343360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.